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ARTICLE INFO ABSTRACT

Keywords: Per-and polyfluorinated substances (PFAS) are synthetic compounds used in the production of fluoropolymer

PFOA coatings found in products such as non-stick pans, clothing, cosmetics, and food packaging. These highly

Gen X persistent molecules are known as “forever chemicals” since they neither degrade environmentally nor break
;zrj:;gen down enzymatically within biological systems. PFAS compounds readily contaminate water sources, and as a
Cilia result, certain PFAS molecules have bioaccumulated in exposed species including humans. The purpose of this

study was to define the effect of two PFAS molecules, the ostensibly more toxic perfluorooctanoic acid (PFOA)
and the more recent, reportedly safer chemical hexafluoropropylene oxide dimer acid (Gen X), on the devel-
opment of Lytechinus variegatus sea urchin embryos. We examined the effects of PFOA and Gen X on development
and patterning using morphological analysis, immunostaining, HCR-FISH, and Particle Image Velocimetry (PIV).
The results show that both PFAS compounds are teratogenic to sea urchin embryos. PFOA and Gen X each
function at different intervals during development and provoke distinct phenotypic and gene expression out-
comes. Despite beliefs that Gen X would be a safer alternative, our findings indicate that Gen X has earlier and
more severe effects on endomesoderm and dorsal-ventral axis specification, neural development and function,
and pattern formation compared to PFOA. These results illustrate the dangerous teratogenic potential of envi-
ronmentally accumulating PFAS like Gen X, underscoring the negative ecological implications that accompany
continuing commercial and industrial use of PFAS in the absence of remediation strategies.

1. Introduction

Per-and polyfluroalkyl substances (PFAS) are synthetic chemicals
that are used to make fluoropolymer coatings found in many products,
such as non-stick pans, clothing, cosmetics, and food packaging; PFAS
are also used in aqueous, film-forming foam used in firefighting
(Ackerman Grunfeld et al., 2024; Buck et al., 2011; Ding et al., 2020;
Gaballah et al., 2020; Gebreab et al., 2020; Landrigan et al., 2020; Wang
et al., 2017). Known colloquially as “forever chemicals,” PFAS are

highly stable and persistent in the environment due to the chemical
stability of the C-F bond and their lack of both natural and enzymatic
degradation. These characteristics have allowed some PFAS to bio-
accumulate in exposed species, from creatures near the base of the food
chain such as plankton and worms to top level predators such as sharks,
dolphins and seals (Beale et al., 2022; Burkhard and Votava, 2023; Cara
et al., 2022; Chen et al., 2025; Endo et al., 2023; Khan et al., 2023;
Kwiatkowski et al., 2020; Lettoof et al., 2023; Macorps et al., 2022; Pan
et al., 2021; Pickard et al., 2022; Qian et al., 2023; Son et al., 2020).
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Since many directly exposed animals, i.e. in marine environments, are
low on the food chain, PFAS exhibit broad bioaccumulation across many
species including humans (Burgess et al., 2023; Forsthuber et al., 2020;
Kato et al., 2011; Li et al., 2021; Rosenfeld et al., 2023; Wang et al.,
2025).

Humans are also exposed to PFAS through a variety of pathways in
addition to the consumption of animal products, including via drinking
water, the air, food packaging materials, and cosmetics (Blake and
Fenton, 2020; Cousins et al., 2021; Davidsen et al., 2021). Nearly all
humans have a detectable percentage of PFAS in their bloodstream
(Davidsen et al., 2021; Ding et al., 2020; Gebreab et al., 2020). Recent
findings by the EFSA found the median concentrations of PFOS and
PFOA in adult human serum in the UK to be 7.7 ng/ml and 1.9 ng/ml
respectively; a study of human breast milk from mothers in China found
PFAS in 100 % of samples with a mean concentration of 203 pg/mL; a
study in the Czech Republic found PFAS in 100 % of adult serum samples
with a median concentration of 2.43 ng/mL (Jin et al., 2020; Schrenk
et al., 2020; Sochorova et al., 2017). PFAS are associated with detri-
mental health effects including suppressing immune responses to vac-
cines, liver toxicity, increasing serum cholesterol, increasing the risk of
pregnancy-induced hypertension, and increased risk of kidney and
testicular cancer (Agency for Toxic Substances and Disease Registry,
2021; Blake and Fenton, 2020; Fenton et al., 2017; Kotlarz et al., 2020;
Park et al., 2024; Phelps et al., 2023; Rericha et al., 2023). PFAS expo-
sure has negative effects on development, leading to morphological
defects, neurological defects and neurotoxicity, and low birthweights
(Carstens et al., 2023; Fan et al., 2023; Mahapatra et al., 2023; Rericha
et al.,, 2023). Moreover, PFAS accumulate in the human placenta,
allowing them to be passed to the fetus in utero and promoting high
developmental exposure levels (Blake et al., 2020; Chowdhury et al.,
2024; Kilari et al., 2025; Lemos et al., 2024; Mamsen et al., 2019). This
observation in particular calls for extensive study of the impacts of PFAS
on embryonic development.

This study focuses on two PFAS, perfluorooctanoic acid (PFOA), and
hexafluoropropylene oxide dimer acid (HFPO-DA) fluoride, known as
Gen X. PFOA has been linked to toxic effects in humans and model or-
ganisms and is a teratogen (Fenton et al., 2017; Gaballah et al., 2020;
Kotlarz et al., 2020; Liu and Irudayaraj, 2020; Yu et al., 2021). PFOA has
been detected in species of multiple trophic levels across the globe (Chen
et al., 2024; Chynel et al., 2021; Galatius et al., 2013; Taylor et al., 2017;
Thompson et al., 2011; Zhang et al., 2019), however bioaccumulation
levels vary greatly depending on tissue and organism; for instance, a
study of predators in the North Sea found levels of 0.88-1.51 ng/g wet
weight in the livers of seals and cetaceans, a study in Qinzhou Bay found
levels of 0.07-3.48 ng/g dry weight across various fish and invertebrate
species, and Casal et al. detected PFOA concentrations of 0.5-6.7 ng/g
dry weight in plankton samples collected from the Pacific, Atlantic and
Indian oceans (Casal et al., 2017; Du et al., 2021; Galatius et al., 2013).
However, there is a lack of longitudinal data for environmental PFAS
levels, and it is therefore challenging to determine the rate of environ-
mental and biological accumulation. Given its broad environmental
distribution and health effects, PFOA has been generally phased out of
production in the United States and replaced with Gen X, based on initial
studies indicating that Gen X bioaccumulates less than PFOA. Despite its
increased use, the biological impacts of Gen X have been understudied
compared to PFOA and other “legacy” PFAS (Barragan et al., 2023;
Davidsen et al., 2021; Gebbink and van Leeuwen, 2020; Gebbink et al.,
2017; Phelps et al., 2023), with only two papers including Gen X in their
studies of PFAS bioaccumulation in natural environments and neither of
these reporting tissue concentrations for Gen X, making it difficult to
understand how the bioaccumulation of Gen X compares to that of
legacy PFAS such as PFOA (Giari et al., 2023; Semerad et al., 2022).
Despite its reportedly shorter half-life, studies have indicated that the
toxic effects of Gen X are similar to those of PFOA (Blake et al., 2020;
Fenton et al.,, 2017; Gebbink and van Leeuwen, 2020; Gomis et al.,
2018). Both PFOA and Gen X impaired human cardiomyocyte
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differentiation, suggesting Gen X may also be a developmental toxicant
(Davidsen et al., 2021). In addition, when differences in toxokinetics
were considered, Gen X appeared to have higher toxic potency in serum
and liver than PFOA (Blake et al., 2022; Gomis et al., 2018; Robarts
et al., 2024; Zhang et al., 2024).

Thus, further studies of the biological effects of Gen X on developing
embryos are warranted, because Gen X may not be the “safer” replace-
ment it was initially thought to be. It is also important to understand the
adverse ecosystem effects of environmental PFAS contamination. Run-
off from factories, production plants, airports, and military bases have
caused wide-spread PFAS contamination of fresh waters; PFAS have also
entered the oceans in large quantities. Despite this reality, little is known
about the consequences of PFAS accumulation in marine species
(Hayman et al., 2021; Khan et al., 2023; Landrigan et al., 2020; Luki¢
Bilela et al., 2023).

Here, we utilize Lytechinus variegatus (Lv) embryos as a sentinel
marine model organism to study the impacts of PFOA and Gen X.
L. variegatus, commonly known as the green sea urchin, is an excellent
model organism for studying effects on development. L. variegatus em-
bryos are transparent and morphologically simple, making their devel-
opment accessible. Development and embryogenesis are rapid, with
larval development well-underway 48 h post-fertilization (hpf) (Adonin
et al., 2021). The surprisingly high genetic similarity of sea urchins to
vertebrates, including humans, makes them a suitable model for genetic
analysis (Adonin et al., 2021; Bradham et al., 2006; Davidson, 2006;
McClay, 2011; Sodergren et al., 2007). Their sensitivity to environ-
mental changes and pollutants makes sea urchin embryos, including
L. variegatus, excellent sentinel species (Arnberg et al., 2018; Cossa et al.,
2024; Dorey et al., 2022; Duvane and Dupont, 2024; Moreno-Garcia
et al., 2022; Pinsino and Matranga, 2015; Przeslawski et al., 2015; Sarly
et al., 2023; Sato et al., 2018) that predict biological consequences for
other marine animals that exhibit less sensitivity. The goal of this study
was to define the effects of PFOA and Gen X on development and
patterning in L. variegatus embryos, and to elucidate how PFAS exposure
perturbs these processes.

2. Results

2.1. PFOA and Gen X have effects on secondary mesenchyme cell (SMC)
and endodermal derived structures

To determine the effect of exposure to PFOA or Gen X (Fig. 1A1-2) on
the development of sea urchin embryos, Lytechinus variegatus embryos
were treated with either PFOA or Gen X at fertilization. Compared to
time-matched controls (Fig. 1B1-3), larvae treated with PFOA appeared
mildly stunted (Fig. 1C1-3), while Gen X treated embryos exhibit a se-
vere delay to gut development and dramatically perturbed morphology
(Fig. 1D1-3). The endomesoderm of the sea urchin embryo and larvae is
comprised of gut-forming endoderm, along with primary and secondary
mesodermal cells (PMCs and SMCs, respectively). The PMCs are skel-
etogenic, while the SMCs give rise to pigment, muscle, and immune
cells. We noted that GenX-exposed embryos also exhibited a notable
absence of pigment cells at 48 h post-fertilization (hpf) (Fig. 1D3). The
doses required to obtain these phenotypes are relatively high, and this
likely reflects the hydrophilicity of each molecule, presenting a barrier
to diffusive entry into the embryo that is likely overcome only at these
concentrations.

To better assess endoderm and SMC perturbation with PFAS expo-
sure, we performed HCR-FISH for endo16 and pks1, which are expressed
in the gut and pigment cells, respectively (Calestani and Rogers, 2010;
Calestani et al., 2003; Romano and Wray, 2006). In PFOA-treated em-
bryos, endo16 expression is significantly reduced at 18 hpf, but recovers
by 21 hpf (Fig. 1F1-2, K1). Gen X-treated embryos show a significant and
dramatic reduction in endo16 expression at both 18 and 21 hpf, as well
as a significant reduction in the endol6 expression area at 21 hpf
(Fig. 1G1-2, K1-2). Gen X but not PFOA exposure significantly and
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Fig. 1. Gen X is sufficient to perturb SMC and endodermal patterning. A.
PFAS molecular structures are shown for perflurooctanoic acid (PFOA,
CgHF1505) (A1) and hexafluoropropylene oxide dimer acid (Gen X, C¢HF;,03)
(A2). B-D. Phenotypes for control (B), PFOA (300 uM, C), or Gen X (250 pM, D)
continuous treatments are shown at 18 (late gastrula, 1), 21 (prism, 2) and 48
(larva stage, 3) as DIC images. Insets at 48 hpf include arrowheads that indicate
pigment cells. E-J. Control and PFAS-treated embryos were subject to HCR-
FISH for Lv-endol6 (E-G) or Lv-pksl (H-J) at 18 (1) and 21 (2) hpf. K. The
total expression level (1) and normalized area (2) for endo16, and the number
of pksl-positive SMCs (3) are plotted as the average + s.e.m. **p < 0.005, ***p
< 0.0005, and ****p < 0.00005; otherwise, insignificant (t-tests); n = 4-10 per
Eondition. Scale bars are 50 pm here and in all other figures unless indicated.

dramatically inhibited SMC specification, with a significant reduction in
SMC numbers per embryo at both 18 and 21 hpf (Fig. 1H1-J2, K3). Thus,
PFAS exposure perturbs endomesoderm specification in sea urchin em-
bryos, with Gen X exhibiting more severe and long-lasting impacts on
both tissues.

2.2. PFOA and Gen X perturb sea urchin skeletal patterning and PMC
migration

Along with SMCs, the embryo also contains primary mesenchyme
cells (PMCs) that initially serve as the major organizer, then later
differentiate as skeletogenic mesenchyme cells (Ettensohn and
Adomako-Ankomah, 2019; Gustafson and Wolpert, 1961a,b; Hor-
stadius, 1939; Lyons et al., 2014; Wolpert and Gustafson, 1961). The
PMCs adopt spatial positions within the blastocoel in response to ecto-
dermal cues whose spatial expression dictates the skeletal pattern
(Armstrong et al., 1993; Duloquin et al., 2007; Malinda and Ettensohn,
1994; Piacentino et al., 2016a). To determine the effects of PFOA or Gen
X exposure on larval skeletal development, we visualized the skeletal
morphology in 48 hpf larvae that were treated with either chemical at
fertilization (Fig. 2A-D). PFOA-treated embryos exhibited significant
numbers of secondary anterior skeletal losses and rotations around the
anterior-posterior (AP) axis, while Gen X-treated embryos show mainly
secondary element duplications, rotations around the dorsal-ventral
(DV) axis, and spurious elements (Fig. 2A-D, S1). Transformed ele-
ments arose more frequently and significantly with PFOA exposure
compared to Gen X, although the overall number of embryos exhibiting
transformations was relatively low in both cases (Fig. S1B). Thus,
exposure to PFAS compounds PFOA or Gen X is sufficient to elicit
skeletal patterning defects in sea urchin embryos, with each treatment
producing distinct defects.

In addition to the birefringence of their skeletons, some PFAS-treated
embryos also exhibited a diffuse birefringence signal within their guts
(Fig. 2B1, arrow). To test whether that signal reflects ectopic biomin-
eralization, we employed calcium-binding fluorophores to label the
skeleton (Descoteaux et al., 2023). Those results show that the skeleton
but not the gut-specific birefringence labels with these fluorophores
(Fig. S2), indicating that the birefringence in the gut is not due to local
calcium accumulation. We therefore conclude that the signal within the
gut reflects ingested PFOA, which is naturally birefringent (Butnor et al.,
2020). The polychrome labeling experiments also show that the skeleton
develops with normal timing in PFOA-treated embryos.

During skeletal patterning and biomineralization, the PMCs extend
thin filopodia that are thought to sense patterning cues expressed by the
ectoderm; those cues direct PMC migration and positioning into a ste-
reotypical spatial pattern comprised of two ventrolateral clusters of
PMCs that are connected by chains of cells which form a posterior ring
that encircles the blastopore and hindgut, along with two cords of cells
that extend anteriorly from ventrolateral clusters (Armstrong et al.,
1993; Ettensohn and Malinda, 1993; Miller et al., 1995; Piacentino et al.,
2015, 2016a). The PMCs also extend thick cables which join to form a
tubular syncytium that connects the cells, and into which the skeleton is
secreted during biomineralization (Kahil et al., 2020; Khor et al., 2023).
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Fig. 2. PFOA and Gen X are sufficient to perturb skeletal patterning and PMC migration.

A-C. The skeletons within control (A), PFOA- (300 pM, B), and Gen X-treated (250 uM, C) larvae are shown at 48 hpf as live birefringence images with the cor-
responding DIC images inset (1) and as schematics (2) with primary skeletal elements in blue and secondary skeletal elements in red. Non-skeletal birefringence
signals in the gut (arrow in B1) appear to reflect ingested PFOA. Skeletal rods that are indicated in A2 include ventral transverse rods (VTs, cyan); dorsal-ventral
connecting rods (DVCs, green); anonymous rods (anon, blue); body rods (BR, violet); aboral rods (AR, red); oral rods (OR, orange); recurrent rods (RR, yellow),
and the dorsal sheitel (sch, pink). D. Skeletal defects in PFOA- and Gen X-treated embryos at 48 hpf are plotted as averages +s.e.m. *p < 0.05; **p < 0.005; ****p <
0.00005; otherwise, insignificant (t-tests); n = 36-41 per condition. E-G. PMCs were immunolabeled in control embryos (E) and in embryos treated with PFOA (F) or
Gen X (G) at 18 (1), 21 (2) or 48 (3) hpf; corresponding Hoechst-labeled images are inset. Arrows, arrowheads, and asterisks in F3 and G3 indicate abnormal
filopodia, ectopically positioned PMCs, and abnormally large PMC clusters, respectively. See also Figs. S1-3. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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Fig. 3. PFOA and Gen X treatment exert their effects during defined and distinct temporal windows. A, C. The schematic depicts the variable PFAS exposure
windows for different addition (upper bars) or removal times (lower bars) for PFOA (A) or Gen X (C). B, D. Embryos were treated with PFOA (300 pM, B) or with Gen
X (250 pM, D) at the indicated time points through development (1) or treated at fertilization, then washed out of the PFAS at the indicated time points (2). The
resulting embryos (n > 100 per condition) were scored at 48 hpf as indicated; the results are plotted as averages + s.e.m. The temporal windows of action for PFOA
and Gen X are shown as dotted boxes in A and C. The developmental time course schematic in A and C was adapted from Hogan et al. (2020).

To determine whether the spatial positioning of the PMCs is per-
turbed by PFAS exposure, PMCs were visualized using immunolabeling
(Fig. 2E-G). PFOA- and Gen X-treated embryos each display abnormally
positioned PMCs at 18 hpf, along with abnormal filopodia, abnormal
PMC clusters, and ectopically positioned PMCs. While both PFOA and
Gen X elicit a morphological delay, these delays are more pronounced
for Gen X, whose PMCs are delayed in both the formation of the initial
ring-and-cords pattern, and the progression from it (Fig. 2G-S3). These
findings show that PFOA and Gen X treatment each result in abnormal
migration and spatial organization of the PMCs; the stronger perturba-
tions evident in Gen X-treated embryos are consistent with the more
pronounced skeletal patterning defects that it elicits compared to PFOA.
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2.3. PFOA and Gen X exert their effects during defined temporal windows

To determine when PFOA and Gen X perturb L. variegatus develop-
ment, timed PFOA or Gen X (Fig. 3A-D) additions and removals were
performed at a range of developmentally relevant time points. After
reaching the larval stage (48 hpf), the resulting morphology was then
scored, using skeletal patterning as a read-out.

The dorsal-ventral axis is specified before and during the installation
of skeletal patterning cues (Bradham and McClay, 2006; Hardin and
Armstrong, 1997; Hardin et al., 1992; Hogan et al., 2020). Loss of DV
specification results in radialized skeletal patterns due to broad
disruption of ectodermal specification. DV defects that are more mild
lead to other distinct skeletal patterns, including partial ventral expan-
sion as indicated by a very wide angle between the aboral rods and/or
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the presence of supernumerary aboral rods (AR) extending from the
ventral-transverse rods (VT). In contrast, bona fide patterning defects
are morphologically distinct (see Fig. 2) and do not arise from under-
lying DV aberrations.

The skeletal patterns obtained in these temporal experiments were
scored for DV defects versus patterning defects. We found that PFOA
perturbs development in > 50% of the treated embryos when added up
to 30 hpf (Fig. 3B1), while removing PFOA ceases to rescue normal
development in > 50% of the embryos at and after 21 hpf (Fig. 3B2).
This broad window of effect from 21 to 30 hpf encompasses the
morphological transition from late gastrula to pluteus stage, including
the interval for secondary skeletal patterning (Fig. 3A) (Hogan et al.,
2020; Piacentino et al., 2015, 2016a). Most of the abnormalities
observed in PFOA-treated embryos are broad skeletal patterning defects,
with relatively few DV defects, consistent with the temporal period of
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Fig. 4. PFOA and Gen X are sufficient to perturb ectodermal expression of
skeletal patterning cue genes. A-C. Control (A), PFOA- (300 puM, B) and Gen
X- (250 pM, C) treated embryos were subject to HCR-FISH for Lv-wnt5 at 18 (1)
and 21 (2) hpf, Lv-vegfr at 18 hpf (3) and Lv-univin at 18 hpf (4). D. Total
expression (1) and the normalized area of expression (2) for each gene is plotted
as the average + s.e.m. *p < 0.05, **p < 0.005, ****p < 0.00005; otherwise,
insignificant (t-tests); n = 5-15 per condition. See also Fig. S4.
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action for PFOA (Fig. 3B1-B2). These results suggest that PFOA’s sulffi-
ciency for disrupting development during this interval reflects a late,
potentially direct impact on pathways relevant to skeletal patterning. In
contrast, Gen X exposure perturbed development when added up to 7
hpf (Fig. 3D1) and failed to rescue development when removed at 13 hpf
(Fig. 3D2) when considering a 50% effect threshold. Unlike PFOA, most
of the perturbations observed in Gen X-treated embryos are partial DV
defects (Fig. 3D1-D2). The earlier window of effect from 7 to 13 hpf
corresponds very well with DV specification (Bradham and McClay,
2006; Hardin et al., 1992; Piacentino et al., 2015). Overall, these data
indicate that Gen X has an early, potentially direct effect on ectodermal
DV specification that indirectly perturbs skeletal patterning, while PFOA
has a later, possibly direct effect on skeletal patterning.

2.4. PFOA and Gen X selectively perturb expression of ectodermal
patterning cues and PMC genes

Migration of the PMCs is directed by patterning cues that are
expressed by the ectoderm, that PMCs presumably sense via filopodial
extensions (Armstrong et al., 1993; Ettensohn and Malinda, 1993; Miller
et al., 1995; Piacentino et al., 2015, 2016a). Sea urchin skeletal
patterning cues include ectodermal VEGF, Wnt5, and the TGFf signal
Univin, with the corresponding receptors expressed by the PMCs
(VEGFR) or globally (Alk4/5/7) (Adomako-Ankomah and Ettensohn,
2013; Duloquin et al., 2007; Mcintyre et al., 2013; Piacentino et al.,
2015, 2016a; Thomas et al., 2023); the Wnt5 receptor is not known. The
initially homogenous group of PMCs diversifies in response to these
cues, with genes including jun and pks2 expressed by spatially discrete
PMC subsets (Adomako-Ankomah and Ettensohn, 2013; Hawkins et al.,
2023; Sun and Ettensohn, 2014; Zuch, D. T., & Bradham, 2019). The
spicule matrix (SM) genes, including msp130, sm30b, and sm50, are also
expressed by PMC subsets and encode proteins that are incorporated
into the biomineral skeletal spicules (Benson et al., 1983; Lyons et al.,
2014; Mann et al., 2010; Oliveri et al., 2002, 2003, 2008). We next
tested how the expression of these genes was affected by PFAS exposure
using HCR-FISH (Figs. 4-5).

The patterning cue wnt5 is expressed in the ventrolateral ectoderm at
18 and 21 hpf (Fig. 4A1-2) as expected (Mcintyre et al., 2013; Thomas
et al., 2023); similarly, vegf and univin were normally expressed in
ventrolateral or lateral ectodermal domains at 18 hpf
(Adomako-Ankomah and Ettensohn, 2013; Duloquin et al., 2007; Pia-
centino et al., 2015, 2016a) (Fig. 4A3-4). PFOA exposure produced only
subtle effects on the expression of these patterning cues, while the im-
pacts of Gen X treatment were more dramatic (Fig. 4B-C, S4). Quanti-
fication shows that neither vegf nor univin expression areas were affected
by PFOA or Gen X exposure, nor was univin level at 18 hpf (Fig. 4D).
Interestingly, Gen X-treated embryos frequently exhibited a significant
unilateral reduction of vegf expression level (Fig. 4C3, D1). In contrast,
wnt5 level and expression area were significantly increased at 18 hpf by
both PFAS, with Gen X exerting a more dramatic effect (Fig. 4A1-A2,
B1-B2, C1-C2, D). At 21 hpf, PFOA- and Gen X-exposed embryos
recovered normal wnt5 expression level, while Gen X-exposed embryos
were unable to laterally restrict the wnt5 expression area (Fig. 4B1-2,
C1-2, D1-2). Gen X exposure similarly spatially disrupted univin
expression without changing its total expression area at 18 hpf (Fig. 4C4,
D2); univin expression levels were reduced at 21 hpf by Gen X (Fig. S4).
Thus, while exposure to either PFAS perturbed ectodermal patterning
cue expression, Gen X produced a more severe and long-lasting spatial
effect.

Because ectodermal cues impact PMCs, we next examined gene
expression in that lineage. In control embryos, sm50 is expressed by the
ventral PMCs and the cords (Fig. 5A1, G1); msp130 is most highly
expressed in the PMC clusters and more weakly marks the cords and
ventral part of the posterior PMC ring (Fig. 5B1, G2); sm30b expression is
strongest in the PMC clusters (Fig. 5C1, G3). In PFOA-treated embryos at
18 hpf, these genes are each expressed at significantly reduced levels in
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Fig. 5. PFOA and Gen X are sufficient to perturb expression of PMC subset genes at 18 hpf. A-F. Control (1), PFOA- (300 pM, 2) and Gen X- (250 pM, 3) treated
embryos were subject to HCR-FISH for PMC genes Lv-sm50 (A), Lv-msp130 (B), Lv-sm30b (C), Lv-jun (D), Lv-pks2 (E), and Lv-vegfr (F) at 18 hpf. G. The total
expression (AFU x100) for each gene is plotted for the indicated spatial regions in the PMC pattern as the average + s.e.m. *p < 0.05, **p < 0.005, ***p < 0.0005;
otherwise, insignificant (t-tests); n = 5-16 per condition. L C + C, left clusters and cords; R C + C, right clusters and cords; V, ventral ring; D, dorsal ring (See Methods

for details).

the clusters and cords (Fig. 5A2, B2, C2, G1-3). Gen X mildly reduced
right side msp130 levels without impacting expression in the left side or
either part of the ring at 18 hpf (Fig. 5A3, B3, C3, G1-3). Since bio-
mineralization appears unaffected by either PFAS, these results imply
that the perturbations of these spicule matrix-associated genes induced
by PFAS exposure were not sufficient to disrupt biomineral formation.

In controls at 18 hpf, jun was expressed in PMC clusters, while pks2
and vegfr exhibited a more complex pattern as expected (Fig. 5D1, E1,
F1) (Adomako-Ankomah and Ettensohn, 2013; Duloquin et al., 2007;
Hogan et al., 2020; Piacentino et al., 2016b; Sun and Ettensohn, 2014;
Thomas et al., 2023; Zuch, D. T., & Bradham, 2019). The expression of
both jun and pks2 appears control-like in PFOA-treated embryos at 18
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hpf (Fig. 5D-E, G4-5). In contrast, both jun and pks2 exhibit abnormal,
expanded spatial expression in Gen X-treated embryos at 18 hpf that is
consistent with delayed development since at earlier stages, both jun and
pks2 are more broadly expressed within the PMC population, and, for
jun, in the ectoderm as well (Hawkins et al., 2023; Rodriguez-Sastre
et al., 2023; Thomas et al., 2023; Zuch, D. T., & Bradham, 2019). Both
genes are also upregulated in Gen X treated embryos compared to
controls at 18 hpf, with jun being significantly overexpressed in each
spatial subregion (Fig. 5G4) and pks2 overexpressed in most (Fig. 5G5).
The lack of spatial restriction of pks2 in Gen X-exposed embryos may be
indicative of a reduction in LOX signaling (Hawkins et al., 2023). Gen X
expanded vegfr expression throughout the PMCs at 18 hpf in a pattern
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Fig. 6. PFOA and Gen X are sufficient to perturb ectodermal DV specifi-
A1 el cation and neural development. A-C. Control embryos (1) and embryos
treated with PFOA (300 uM, 2) or Gen X (250 pM, 3) were subject to HCR-FISH
for the dorsal marker Lv-irxA (red, A) and ventral marker Lv-chordin (green, B)
at 18 hpf. Merged images that include Hoechst staining (blue, C) were used to
measure the radial extent of Chordin and IrxA expression domains as shown. D.
The angular spatial extent of the ventral territory, dorsal territory, and the
ciliary band (CB) (1) and the ratio of the dorsal and ventral expression levels

and the ratio of the ciliary band angle to 360° (2) are plotted as the average + s.
e.m.; **p < 0.005, ***p < 0.0005, ****p < 0.00005, otherwise not signficant (t-
tests); n = 30 across 4 biological replicates. E, F. Control embryos (1) and
embryos treated with PFOA (2) or Gen X (3) as above were subjected to HCR-
FISH for the pan-neural marker synaptotagmin B (red) and immunolabeling for
the ciliary band (green) at 48 hpf; insets show the extent of CB restriction (E).
Similar embryos were subjected to immunolabeling for apical serotonergic
neurons (magenta, F), with corresponding Hoechst images inset. G. The number
of synaptotagmin B neurons (G1), serotonergic neurons (G2), and number of
embryos with evident processes extended by serotonergic neurons (G3) are
plotted as average + s.e.m; *p < 0.05, ***p < 0.0005, ****p < 0.00005;
otherwise, insignificant. (¢-tests); n = 11-20 per condition. See also Fig. S5. (For
interpretation of the references to colour in this figure legend, the reader is
Eeferred to the Web version of this article.)

<

that is consistent with a developmental delay but not with a strong DV
perturbation (Duloquin et al., 2007). In contrast, vegfr expression was
normal with PFOA at 18 hpf (Fig. 5F and G6). Together, these results
show that PFOA has a stronger effect on spicule matrix protein-encoding

250 e Control 25 *ﬁ\ Control gene expression, while Gen X instead effects expression of signaling
200 =1 WZZSQ 2.0 1_|I I HZZS;\( components within PMCs during their patterning.
& 150] s 015
% Rt 5 T I 2.5. PFOA and Gen X perturb DV spatial territories and ectodermal
£ 100 . 1.0 differentiation
50 =B 05
‘ Given that patterning cue expression is disrupted by PFAS exposure,
0 ventral dorsal CB 0 DIV CB ratio we next examined their effects on ectodermal specification. The sea

urchin ectoderm is comprised of broad ventral and dorsal territories that
are separated by an apically constricted ciliary band. Neurons are
associated with the entire ciliary band, while the apical plate specifically
contains serotonergic neurons. To further investigate the impacts of
PFOA and Gen X on ectodermal specification, the spatial expression of
DV marker genes was next assessed using HCR-FISH (Fig. 6A-C). We
measured the expression of Lv-chordin, a target of Nodal signaling and a
ventral marker, and Lv-irxa, a target of BMP2/4 signaling and a dorsal
marker (Bradham et al., 2009; Su et al., 2009) (Fig. 6A-C). The ciliary
band (CB) is restricted to the space between the signaling domains of
these two ligands. Perturbations to DV specification result in spatially
aberrant CB patterning or restriction, making the CB a structural indi-
cator of DV perturbation (Bradham et al., 2009; Yaguchi et al., 2010). In
PFOA-treated embryos, the ventral domain is contracted, while the
dorsal domain is correspondingly expanded, both in a small but statis-
tically significant manner (Fig. 6B-D). This unexpected and surprising
outcome indicates that PFOA treatment mildly impacts DV specification

.
@
N
@
w

o 60 . 05 s 120 ERE despite the evidence herein (see Fig. 3A and B) that PFOA has no effect
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ﬁ; 30 | :f g ) -g 3 60 | 1992; Piacentino et al., 2015). These findings suggest that some spatial
Y S
6§20 O c , o 240 DV specification plasticity persists between 18 and 21 hpf in Lv, corre-
4 =2 £ i
#* 510 5 1 X=E 20 sponding to late gastrula and prism stages, when PFOA exerts its effects.
] o 2 | & & &
€0 S g x c0 5 < X 0 5 < x In contrast, Gen X-treated embryos show significant reduction to the
‘g’ w g "E g s £ E s ventral but not dorsal domain size. Instead, the CB, calculated as the
o 3 2 S e o space between the ventral and dorsal regions, is correspondingly

enlarged but in a highly variable manner that does not reach significance
(caption on next column) (Fig. 6C and D). Expansion of the CB can also be observed at later time
points in development of Gen X- but not PFOA-treated embryos (Fig. S5);
curiously, Gen X-exposed embryos did not survive past 72 hpf, while
PFOA-treated embryos remained viable until at least 96 hpf. These re-
sults match the active window for Gen X that corresponds with DV
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specification (see Fig. 3C and D). Both treatments have a similar impact ciliary band (Bisgrove, B. W., & Burke, 1986; Bradham et al., 2009;
on the DV ratio; the fractional angle of the CB shows how the dorsal ratio Burke R. D., 1978; Yaguchi et al., 2006), while the serotonergic neurons
increase relies on CB expansion with Gen X but not PFOA exposure are localized in the apical part of the band (Yaguchi et al., 2006). Per-
(Fig. 6D2), implying that Gen X might directly impact the DV-specifying turbations to ectodermal patterning and the CB result in altered neu-
TGFp signals that control CB width, whereas PFOA appears to effect CB rogenesis (Yaguchi et al., 2006, 2010). We performed HCR-FISH to
positioning, shifting it slightly ventrally without changing its size. Those detect synaptogagmin B (synB), a pan-neural marker (Burke et al., 2006)

differences in action agree well with the different temporal intervals of and found that both PFOA- and Gen X-treated embryos have signifi-
action for each chemical. cantly reduced neuronal numbers overall (Fig. 6G1). This agrees with

To test whether PFAS-treated embryos exhibit abnormal ectodermal reduced neural specification in dorsalized embryos, especially in
differentiation, we visualized neurons and the ciliary band using HCR- L. variegatus (Bradham et al., 2009; Yaguchi et al., 2006). In Gen
FISH and immunolabeling (Fig. 6E and F). Neurons are derived from X-treated embryos, the CB exhibits variable, localized abnormalities and
the ectoderm, and most neurons in sea urchin larvae are found in the discontinuities (Fig. 6E3 and inset), agreeing with results from earlier
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Fig. 7. PFOA and Gen X are sufficient to perturb cilia movements and swimming behaviors.

A-D. Exemplar control (1), PFOA-treated (300 pM, 2), Gen X-treated (100 pM, 3), and nickel-treated (0.2 uM, 4) embryos that were subjected to Particle Image
Velocimetry (PIV) are shown as 3 s averaged snapshots with flow streamlines (white lines, A), and with vortex locator heatmaps that show flow speeds (B) or vorticity
(C) with the embryos masked in red and with LUTs inset; the detected vortex locations and directions are schematized (D) with the mouth indicated (“M™). E. The
average number of vortices generated (1), the average velocity magnitude around the larvae (2), and the average velocity magnitude at the mouth (3) are plotted as
the average over 3 s &+ s.e.m; *p < 0.05, **p < 0.005, ****, p < 0.00005; otherwise, insignificant (t tests); n = 10. See also Fig. S6 and Movies S1-3. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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measures (Fig. 6A-D). In contrast, the CB in PFOA-treated embryos
appears normal (Fig. 6E2 and inset). This lack of effect of PFOA on the
CB also correlates with findings from earlier measures (Fig. 6A-D).
Serotonergic (ser) neurons were detected by immunolabeling (Fig. 6F).
PFOA-treated embryos exhibited no significant change in either neuron
number or presence of processes for ser neurons; however, Gen X-treated
embryos exhibited significant reductions in both ser neuron numbers
and their processes (Fig. 6G2-3). These results show that PFAS exposure
results in mild DV specification defects and, with Gen X especially, in
neuronal losses.

2.6. PFOA and Gen X are sufficient to perturb flow fields generated by
larvae

The conspicuous cilia extended by cells in the CB drive the swimming
behavior of the embryo. Perturbations to ectodermal patterning and
neurogenesis alter swimming behavior of embryos (Yaguchi and Katow,
2003). In cultures treated with PFOA, we observed altered swimming
behavior with embryos floating at the surface of the water to form rafts,
rather than swimming up and down in the water column (Movies 51-2).
Gen X-treated larvae exhibit swimming behavior that is similar to con-
trols aside from being slower (Movie S3). To test whether PFAS treat-
ment perturbs cilia movement, we confined live embryos under
coverslips, then continuously visualized particles in the media to
quantitate the fluid flows using established particle image velocimetry
(PIV) methods for data analysis (Stamhuis, E. and Thielicke, 2014)
(Fig. 7) (see Methods). Control 48 hpf larvae typically exhibit a flow
pattern that consists of six vortices (Fig. 7A1). An obvious effect of the
cilia movement and resultant vortices, particularly between the long
(aboral) rods, is the generation of flow toward the larval mouth
(Fig. 7B1, C1, D1); this is a novel observation. It is likely that the
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combined effects of the externally positioned vortices drives
ventral-forward swimming.

When treated with PFOA, the resulting larvae exhibit an overall
reduction in the number of vortices (Fig. 7A2, E1), particularly along the
body, with bilateral flows only at the ends of each shortened larval arm
(Fig. 7A2). While the average fluid velocity is increased in PFOA
compared to controls (Fig. 7B1-2, C1-2), there is more flow into the
mouth and less flow along the body (Fig. 7E2-3). These changes might
explain the reduced swimming activity observed with PFOA (Movie S1-
2). However, Gen X treatment resulted in distinct effects compared to
PFOA. Gen X treatment typically reduced the number of vortices to four,
with similar positioning to the vortices on the inner and outer faces of
the larval arms as was observed in controls (Fig. 7A3, E1). However,
strikingly, the fluid flows are strongly reduced with Gen X both around
the larvae and at the mouth (Fig. 7B3, C3, D3, E2-3), agreeing with the
loss of neurons previously observed with Gen X treatment (Fig. 6E-G).

Because both Gen X and PFOA produced mild ventral contraction, we
also evaluated Nickel-treated embryos, which exhibit ventralization
(Hardin et al., 1992) to evaluate how DV perturbation impacts fluid
flows. Nickel-treated larvae were used at 48 hpf and exhibit a typical
morphology for this developmental stage (Fig. S6D). The flows around
Ni-treated larvae have a very different profile, with vortices only at the
posterior end of the body (Fig. 6A4). This location corresponds to the
repositioned CB in ventralized embryos (Bradham et al., 2009; Duboc
et al., 2004; Yaguchi et al., 2006).

Unexpectedly, most PFOA-treated embryos (8/10) exhibited left or
right-dominated flow patterns (Fig. S6A). This LR asymmetry also
occurred with Ni (Fig. S6B). Curiously, these LR asymmetries were
randomly distributed among both groups, and were also present, with
less variation, with Gen X and in controls (Fig. S6C). These results
suggest that PFAS exposure perturbs the neural functions that regulate

Gen X
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Expanded Wnt5 Expression

| Endomesoderm Specification
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Fig. 8. A summary of the perturbing effects of PFOA and Gen X on Lytechinus variegatus embryos and larvae is shown at three time points. Changes in the ectoderm
(blue), endomesoderm (green), PMCs and skeleton (red), neurons (purple), morphogenesis, and gene expression are depicted for controls (center) and embryos
treated with PFOA (left) or Gen X (right). M, mouth; A, anus. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web

version of this article.)
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cilia movements, matching their effects on neural specification
(Fig. 6E-G). In keeping with their impacts on neural development, Gen X
produces larger deficits in ciliary function than PFOA.

3. Discussion

In this study, we characterize and compare the effects of the PFAS
chemicals PFOA and Gen X on L. variegatus development. We demon-
strate that each chemical is sufficient to perturb L. variegatus develop-
ment, with impacts on endomesoderm specification, the DV axis,
skeletal patterning, and neural development and function. We establish
that PFOA and Gen X act during distinct temporal windows during
development, with Gen X acting earlier than PFOA, suggesting that they
differ in their mechanisms of action. Endomesoderm specification is
strongly delayed or inhibited by Gen X. The ventral ectoderm is mildly
contracted by each chemical, via dorsal expansion with PFOA versus
ciliary band expansion with Gen X. Each treatment perturbs skeletal
patterning, with differing impacts on the expression of patterning cues
in the ectoderm and probable cue-response genes in the PMCs. The
timing results and specific skeletal abnormalities combined with the
impacts of PFAS exposure on ectodermal and PMC gene expression
patterns suggest that PFOA more directly perturbs skeletal patterning,
while Gen X acts earlier, albeit mildly, on the DV specification pathway;
these effects result in distinct skeletal patterning defects. Gen X exposure
dramatically perturbs neural specification and function, which is much
less affected by PFOA. These overall findings are summarized in Fig. 8.

To our knowledge, this is the first study that assesses the effects of
PFAS exposure on developing sea urchins. Prior work has instead
focused on the effects of PFAS on adult sea urchins (Hamed et al., 2024;
Hayman et al., 2021) or on embryos reared from exposed parents;
interestingly, such embryos also exhibit patterning defects (Savoca
et al., 2023). Contrary to other studies which reported reduced devel-
opmental toxicity with Gen X compared to legacy PFAS (Degitz et al.,
2024; Gaballah et al., 2020; Gebreab et al., 2020; Satbhai et al., 2022),
our study indicates that Gen X is more teratogenic than PFOA, in part
because it acts earlier in development, impacting axial and germ layer
specification, unlike PFOA. Understanding the differences in how PFOA
and GenX partition in differing chemical environments could provide
insight into these differential teratological and toxic effects. However,
empirical analyses of partitioning in lipid membranes and alcohols and
protein/surface absorption properties are limited and primarily focus on
PFAS with short perfluorocarbon chains (Endo, 2023; Goss et al., 2006;
Wu and Chang, 2011). Additionally, studies which use modeling soft-
ware provide inconsistent predictions (Arp et al., 2006; Endo et al.,
2023; Wu and Chang, 2011), and experimental examinations have found
orders of magnitude of difference for Kg, for PFOA between studies
(Chen et al., 2025; Kutsuna and Hori, 2008; Li et al., 2007). However, in
general, longer fluorocarbon chains result in greater partitioning of
PFAS to lipid membranes, whereas short-chain PFAS preferentially bind
to proteins such as serum albumin (Chen et al., 2025; Droge, 2019; Endo
etal., 2023). Because Gen X is a shorter chain PFAS than PFOA (Fig. 1A),
it is possible that the some of the differences in teratogenicity evoked by
these PFAS in this study are due to biophysical differences that impact
where these chemicals preferentially accumulate.

PFAS exposure also interfered with endomesoderm differentiation.
This effect was much more pronounced and prolonged with Gen X, while
PFOA exposure appears to only mildly delay gut morphogenesis with no
evident impact on SMC specification. Because PFOA acts later in
development, after the body axes and germ layers are thought to be
specified, perhaps that timing explains its comparatively mild effect on
the gut. In contrast, Gen X acts much earlier, during secondary axis
specification, when it could potentially interfere with endomesoderm
specification more directly. Even so, Gen X-treated embryos do even-
tually gastrulate, and appear to have complete through-guts by the
larval stage.

The strong inhibition of neural specification and function with Gen X
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reported herein agrees with other studies that show an increase in
expression of neurotoxicity-associated gene transcripts after treatment
with Gen X as well as an increase in repressive histone marks associated
with neurodegeneration (Wu et al., 2023). Thus, given the shared ge-
netic make-up of sea urchins and mammals including humans
(Sodergren et al., 2007), the neurotoxic effects of Gen X on developing
embryos observed herein may be generalizable to mammals.

Skeletal patterning defects are the second-most common birth defect
world-wide, yet their etiology remains mechanistically unclear (Arth
et al., 2017; Cornel, 2000; Eide et al., 2006; Hinton et al., 2017; Mai
et al., 2019; Petterson et al., 2007; Arth et al., 2017; Cornel, 2000; Eide
et al., 2006; Hinton et al., 2017; Mai et al., 2019; Petterson et al., 2007).
Interestingly the pathways involved in sea urchin skeletal patterning are
often involved in human skeletal development (Adomako-Ankomah and
Ettensohn, 2013; Cottrell et al., 2013; Duloquin et al., 2007; Garcia
et al., 1996; Hastbacka et al., 1994; Ivanova et al., 2022; Kere, 2006;
Mcintyre et al., 2013; Oh et al., 2023; Piacentino et al., 2015, 2016b; Rys
et al., 2016; Thomas et al., 2023; Traianedes et al., 1998; Wu et al.,
2016; Xu et al., 2023). In sea urchin embryos, Gen X exposure perturbs
the ectodermal skeletal patterning cues Wnt5, VEGF, and Univin, while
PFOA exposure more transiently impacted Wnt5 without affecting the
other two cues. PFAS exposure also impacted the cellular behavior and
gene expression dynamics of the PMCs during skeletogenesis. Gen
X-treated embryos exhibited spatial expression patterns typical of earlier
stages for jun and pks2, possibly indicating a lack or delay of patterning
cue reception by the PMCs and consistent with Gen X-mediated
perturbation of cue expression. In contrast, PFOA reduced the expres-
sion of skeletal differentiation genes without impacting jun or pks2,
underscoring the distinct mechanisms of action of these PFAS molecules.
These findings agree with other studies showing that PFAS exposure is
sufficient to perturb skeletal growth and development in both pubescent
and embryonic mice (Feng et al., 2024; Koskela et al., 2016); thus, given
their comparable genetic content, similarly to the PFAS-induced
neuronal defects, the developmental skeletal patterning defects
observed in echinoderm larvae exposed to PFAS may also be general-
izable to vertebrates and mammals.

Overall, these results identify both PFOA and Gen X as potent te-
ratogens for echinoderms, with Gen X exhibiting more profoundly toxic
effects, including impacts on the specification of endomesoderm, the
secondary body axis, neural development and function, and pattern
formation. While some of these effects may be generalizable, similar
studies in frogs and zebrafish did not identify axial defects in embryos
treated with PFOA or Gen X (Degitz et al., 2024; Gaballah et al., 2020).
Degitz et al. observed developmental delay in Xenopus laevis embryos at
a low dose of 15 uM for both PFOA and Gen X, but oddly not with doses
comparable to those in this study. The authors speculate that the ge-
netics of the breeding pairs used for the studies may have affected this
outcome. Similarly, Gaballah et al. utilized doses at or below 80 yM for
both PFOA and Gen X and observed no phenotypic defect in frogs or fish;
however earlier studies utilizing PFOA in zebrafish found malformations
of the head and tail at 2 pM that could be indicative of axial defects when
treating closer to fertilization (Hagenaars et al., 2013; Jantzen et al.,
2016).

The ecological significance of these findings is likely to grow as
environmental concentrations of PFAS chemicals rise, particularly in
view of the lack of regulation surrounding Gen X as compared to legacy
PFAS like PFOA (perfluorooctanoic acid) and PFOS (per-
fluorooctanesulfonic acid) that are currently recognized by the USA and
many other countries as hazardous substances and therefore banned
(Langenbach and Wilson, 2021). Sea urchin embryos are recognized as
sentinel marine animals (Arnberg et al., 2018; Cossa et al., 2024; Dorey
et al., 2022; Duvane and Dupont, 2024; Moreno-Garcia et al., 2022;
Pinsino and Matranga, 2015; Przeslawski et al., 2015; Sarly et al., 2023;
Sato et al., 2018) and as such, they provide an early warning of the
potential negative consequences of the continual environmental accu-
mulation of these “forever” chemicals to vertebrate and mammalian
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species, including humans.

The evidently distinct modes of action observed herein for PFOA and
Gen X agree with other findings that also indicate differences in their
toxicological mechanisms (Attema et al., 2022; Bangma et al., 2021;
Blake et al., 2020; Wen et al., 2020; Yoo et al., 2023). The relatively high
potency of Gen X agrees with studies employing a placental trophoblast
model, which showed that the parent chemical for Gen X both accu-
mulated intercellularly at lower concentrations than PFOA, and pro-
voked stronger effects on gene expression (Bangma et al., 2021; Bischel
et al., 2011). Thus, in Gen X-exposed mammals, developing embryos
will experience a higher-than-systemic level of Gen X due to placental
enrichment. Moreover, the placenta is highly sensitive to the adverse
effects caused by Gen X which include atrophy, necrosis and congestion
of the labyrinth, resulting in placental insufficiency and reduced
nutrient and oxygen transfer to the fetus (Blake and Fenton, 2020; Blake
et al., 2020; Conley et al., 2019; Lv et al., 2024), underlining our and
others observations that the potency and danger of the effects of Gen X
exceed those of already-banned PFOA, and calling for policy changes
that also ban the use of Gen X.

Because these chemicals are so stable and persistent in the environ-
ment and within biological systems, they will continue to accumulate
and their concentrations will continue to increase if strategies to reme-
diate them are not actualized, even if their production were to cease.
Thus, determining their effects on biological systems at relatively high
doses is ecologically relevant; seeking methods for their removal is
crucial for the prevention of widespread teratogenesis both environ-
mentally and among humans.

4. Materials and methods
4.1. Animals, chemicals, and Drug treatments

Wild-caught adult Lytechinus variegatus sea urchins were obtained
from Pelagic Corp (Sugarloaf Key, FL, USA), the Duke University Marine
Lab (Beaufort, NC, USA) or from Jake Warner or Laura Salter (NC).
Gametes were collected by injecting adult sea urchins with 0.5 M po-
tassium chloride solution. High purity perfluorooctanoic acid (PFOA,
CAS No. 335-67-1) and hexafluoropropylene oxide dimer acid (Gen X,
CAS No. 13252-13-6) were obtained from Sigma-Aldrich (WI, USA) or
Synquest Laboratories (FL, USA), respectively. Chemical stock solutions
were made by diluting the dry chemicals in nuclease-free dH50, then
frozen in single-use aliquots to avoid repeated freeze-thaw cycles. Em-
bryos were cultured in artificial sea water (ASW) or ASW and PFAS. ASW
was buffered with 1 pL saturated NaHCOs solution per 1 mL ASW
(Thomas et al., 2023). PFAS optimal doses were determined as 300 pM
for PFOA and 250 pM for Gen X via dose-response experiments geared
towards identifying the minimal dose that produced penetrant, repro-
ducible, and non-lethal perturbations (Fig. S7). Those doses were
employed in each experiment except when stated otherwise. Some early
experiments used a Gen X solution at 875 pM; however, based on sub-
sequent optimization studies, we are skeptical that that dose was accu-
rate. Chemicals were added at fertilization unless otherwise noted.

4.2. Skeletal imaging and time course experiments

Sea urchin skeletal images were obtained via illumination with
plane-polarized light to capture the birefringence of the skeletal crystal.
Images of each embryo’s skeleton were taken in multiple focal planes,
then assembled manually in Photoshop (Adobe; v 22.0.1) or Canvas X
Draw (v 20 build 914) to visualize the complete skeleton in focus. For
PFAS removal experiments, PFOA or Gen X was added at fertilization,
then removed at various time points. For PFAS addition experiments, sea
urchin cultures were fertilized in ASW, then PFOA or Gen X was added at
various time points. For both experimental series, the embryos were
developed to the pluteus larval stage (48 hpf), photographed, then
analyzed from the images. Embryos were scored and counted in Canvas
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X Draw (Canvas GFX; v 7.0.2).

4.3. Immunolabeling, hybridization chain reaction florescent in situ
hybridization (HCR FISH), and confocal microscopy

For PMC immunostaining, embryos were fixed in 4% para-
formaldehyde in ASW for 1 h for compatibility with HCR-FISH; other-
wise, fixation and staining were performed as described (Bradham et al.,
2009; Gross et al., 2003). Primary antibodies include PMC-specific
monoclonal 6a9 (used at 1:30 or 1:50; from Prof. Charles Ettensohn,
Carnegie Mellon University, Pittsburgh, PA, USA), ciliary band-specific
monoclonal 295 (undiluted; from Prof. David McClay, Duke Univer-
sity, Durham, NC, USA), and serotonergic neuron-specific polyclonal
a-ser (1:1000, Sigma Aldrich). Secondary antibodies were used at 1:500
and include goat anti-mouse antibodies labeled with Alexa Fluor 488
(Thermo Fisher), Alexa Fluor 546 (Thermo Fisher), or DyLight 405
(Jackson Laboratories), and Cy2-conjugated goat anti-rabbit (1:900;
Jackson Laboratories). Hoechst nuclear stain (Sigma Aldrich) was added
at 1:500 with secondary antibody for some experiments. For HCR-FISH,
embryos were fixed in 4 % paraformaldehyde in ASW for 1 h. HCR-FISH
was performed as described (Choi et al., 2016) using hairpins and probe
sequences designed by Molecular Instruments, Inc. In some cases, em-
bryos were subjected to HCR-FISH followed by immunolabeling.
Confocal microscopy was performed with Nikon C2 or Olympus
FV10i-DOC microscopes at 200X or 400X; the corresponding z-stack
projections were produced with FIJI (v 2.1.0); all z-stack images are
shown as full projections.

4.4. DV, neural analysis, and SMC analysis

For dorsal-ventral HCR-FISH analyses, the extent of chordin and irxa
spatial expression was measured radially from the center of the gut using
the angle measurement tool in ACD Canvas, and the ciliary band size
was calculated by subtracting the sum of chordin (ventral) and irxa
(dorsal) angle measurements from 360° on a per-embryo basis (Thomas
et al., 2023). Neuron counts per embryo were quantified manually by
inspection of unprojected z-stack images of neural immunolabels or
HCR-FISH images of pan-neural marker synaptotagmin B. SMCs were
similarly counted from HCR-FISH images of Lv-pks1 expression. Statis-
tical significance was determined using unpaired two-tailed student’s
t-tests for pair-wise comparisons.

4.5. Ectodermal, PMC, and endodermal gene expression quantifications

Quantification of HCR-FISH signals for ectodermal gene expression
was performed in FLJI using maximum projections of confocal z-stacks
(Fig. S8C). Regions of interest (ROIs) were drawn around discrete areas
of expression within the ectoderm for each gene, then the integrated
density and area for each ROI was obtained. An additional ROI was
drawn around the circumference of the embryo. The total gene expres-
sion was obtained by summing the integrated density for each ROI per
embryo, and the total area of expression for each gene was calculated by
summing the area for each of the ROIs per embryo, then dividing by the
overall area of the embryo for normalization.

Quantification of HCR-FISH signals for PMC gene expression was
performed in FIJI using maximum projections of confocal z-stacks that
were rotated in Napari to a uniform orientation to most accurately
capture dorsal and ventral signal differences (Fig. SS8A-B). ROIs for PMC
genes were drawn to encompass PMCs in the left and right cords and
clusters, and the ventral and dorsal portion of the PMC ring. Expression
levels were defined as the integrated density within the ROIL Endo-
dermal gene expression level and expression area were similarly ob-
tained from ROIs drawn around the endo16 expression area in maximum
projected confocal z-stacks. Values were then averaged for each condi-
tion, and statistical significance was determined using unpaired two-
tailed student’s t-tests for pair-wise comparisons.
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4.6. PIV and flowtrace analysis

To quantify the fluid flows and their patterns around control and
chemically treated sea urchin larvae, live imaging experiments were
performed under squeeze-confinement conditions. First, glass slides
were prepared for imaging by attaching a pair of long rectangular strips
of double-sided tape of 50 pm thickness (Nitto Inc.) side by side to serve
as spacers. Next, a droplet (~50 pl) of seawater containing the sea ur-
chin larva was applied between the spacers. A second droplet of (~10 pl)
of a solution of 1 pm polystyrene microspheres (Polysciences, cat. no.
07310-15) was then added and gently mixed; their final dilution was
around 1:100 (volume of beads to volume of sea water). A cover slip was
then slowly introduced onto the glass slide, then attached to the spacers,
resulting in a confinement chamber that gently trapped the 100 pm sea
urchin larvae under 50 pm squeeze-confinement conditions (Shrestha
et al., 2025). We then carried out live darkfield imaging to quantify the
movement of the microspheres with a Zeiss Axio Imager M2 (an upright
microscope) using a 10X objective to capture a rectangular field of view
of 1.5 mm x 1.5 mm. We captured time-lapse images at 10 fps for 30 s
using a high-speed camera (Hamamatsu ORCA-Fusion Gen-III sCMOS).
The time-lapse images were post-processed using PIVlab in MATLAB
(Stamhuis, E. and Thielicke, 2014) to quantify the larval fluid flows. To
meet the objective of quantifying the flows surrounding the larvae, a
mask was drawn over the larva to avoid any flow quantification artifacts
inside the body due to noise. The set of images was pre-processed to
remove background noise using high-pass filters prior to the PIV analysis
step, which calculates the time-varying velocity vector fields. The ve-
locity vector fields were post-processed to smoothen the fields and
spatially interpolate vectors if necessary. Finally, the fluid flow param-
eter of interest (vorticity or velocity magnitude) was plotted along with
the velocity vector fields. To obtain smooth fluid flow visualizations and
quantification, the averaged mean of the parameter of interest over a
time window of 30 frames (corresponding to a time scale of 3 s) was
calculated.
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