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Keywords: As research becomes more interdisciplinary, researchers develop new methodologies and tech-
Laminar flows nologies for novel experiments that bridge fields. FlumeX’s design features a standard experi-
Flumes mental chamber that can be expanded into different configurations, allowing for cross-
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Corals disciplinary experiments between the fields of fluid dynamics, chemical oceanography, and
Reefs biology. An open-ended, flow-through configuration is ideal for simulating environments where

water is constantly flushed, capable of simulating oceanic environments. A fully enclosed,
recirculating configuration is ideal for particle image velocimetry experiments, standard for fluid
dynamics. FlumeX is designed to allow for husbandry of sessile organisms, including corals, in
tandem with chemical and physical measurements. FlumeX allows for flexibility in experimental
design and comparable environments between recirculating and flow-through configurations. It is
designed with low-cost, readily available materials, making it easy to build and produce en masse
for replicate testing.
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(continued)
Hardware name FlumeX
e Measuring physical properties
e Biological sample handling
Closest commercial No commercial analog is available
analog
Open-source license Creative Commons Attribution-NonCommercial (CC BY-NC)
Cost of hardware Experimental chamber: $192.75 USD. Flow-through configuration* (2 flumes, digital flow meters): $468.26 USD. Recirculating
configuration*: $355.37 USD. *Configuration estimates include cost of experimental chamber(s)
Source file repository https://doi.org/10.5281/zenodo.14051748

1. Hardware in context

Scientific research is increasingly becoming more interdisciplinary, necessitating integrative methods and materials to combine
experimental practices from disparate fields. FlumeX is a modular flume designed to meet the experimental standards of fluid dy-
namics, chemical oceanography, and marine biology investigations — with each field bringing its own set of established protocols.

Fluid dynamics seeks to characterize hydrodynamic phenomena or environments. Researchers can quantify fluid flow in the lab by
recording the movements of small, neutrally buoyant tracer particles and inferring flow characteristics using either Lagrangian
methods of particle trajectory analysis (i.e., particle tracking velocimetry — PTV) [1], or using Eulerian methods of average particle
behavior in a region (i.e., particle image velocimetry — PIV) [2]. These studies investigate flows in static tanks, wave tanks, or flumes,
depending on the scale and nature of the investigated phenomenon. Each of these tools requires a transparent observational section for
recording, and a constant volume of water to seed with tracer particles. Scientists then recreate specific hydrodynamic phenomena in
these enclosed settings [3,4] and/or study flow around different physical structures [5-7]. Wave tanks are used to study larger scale
wave mechanics [8,9]. Alternatively, flumes generate a unidirectional bulk flow and are advantageous to study benthic ecosystems
[10,11]. Across these observational platforms, various tools including pumps and propellors drive pressure differences that develop
reproducible, characteristic flows.

Chemical oceanography refers to the study of chemistry and chemical species within the ocean. Fundamental studies of the in-
teractions between different chemical species and seawater can be carried out in controlled, lab-based experimental setups including
flow reactors [12-15]. Field data can be analyzed on site using sensors and microelectrodes [16-18], or in the laboratory using
standard lab equipment [19].

Studies in marine, and more generally aquatic, biology range from in situ observations in the field to controlled experiments in the
laboratory. For many robust designs, biological experiments necessitate replicate sampling, multiple runs, and statistical hypothesis
testing to quantify the data with sufficient statistical power due to inherent biological variation [20]. Replication is particularly salient
in lab-based experiments, where additional known and unknown factors, such as animal handling and unmeasured environmental
parameters, obfuscate changes in dependent variables [21,22].

As fluid dynamics, chemical oceanography, and marine biology intersect, new methods and sampling techniques are developed to
accommodate the typical experimental designs of each field. Chemical reactions in flow can be studied in flow reactors which allow for
studies of reactions with higher mixing rates and higher reactant concentrations than batch reactors [15]. There are a myriad of sensors
and microelectrodes which collect chemical data in biological and fluid environments [18,23]. Fluorescent dyes or chemical tracers
can be used in tandem with flow quantification to understand how chemical species are affected by hydrodynamic environments
[24-26]. Biological organisms or their mimics are placed in tanks to record biogenic flow fields [27,28] or the effect of environmental
flow on the organism [29-32]. For example, millimeter-scale topographic features were shown to affect coral larval settlement in
wave-driven oscillatory flows [31]. Designing tools to jointly assess physical, chemical, and biological environs requires a tremendous,
coordinated effort, often relying on separate quantifications and trials, plagued with untested assumptions of uniform hydrodynamics
across multiple experimental apparatuses.

We have designed FlumeX — a modular flume system — which integrates the fields of fluid dynamics, chemistry, and biology, for
simultaneous quantitative measurements. FlumeX features a standard observational, experimental chamber which can be fully
assembled into different configurations, allowing for a consistent hydrodynamic environment between FlumeX configurations. FlumeX
can be built in a flow-through configuration, optimal for chemical investigations under a consistent flow regime, or in a recirculating
configuration, optimal for enclosed experiments including flow quantification. Biological experiments can occur in both
configurations.

2. Hardware description

We present a flume design that can be modified for chemical, physical, and biological experiments occurring at small- to meso-
scales (Reynolds number, Re, on a scale of 102-10% of fluid motion close to the coral reef substrate interface. The focus is on the
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near-substrate laminar boundary layer (cm scale), rather than the bulk region (m scale) where flows may be unsteady due to waves and
turbulence. The flows in FlumeX intend to model near-substrate laminar boundary layer flows within a coral reef framework by
matching flow speeds to those observed within a coral reef canopy (1-2 cm s~1) [33-36].

Designing across disciplines poses its own unique set of limitations and design constraints, which need to be assessed in tandem
with the broader experimental goals. FlumeX’s design, including chemical sensors, flow measurements via PIV, and animal husbandry
is shown in Fig. 1(a—c). The resulting design is based on the following features:

e A modular system, allowing for consistent measurements in an open (flow-through), or closed (recirculating) environment,
e An experimental chamber that produces steady, laminar flow across configurations,
e An inexpensive design that can easily be scaled up or down depending on experimental need (Fig. 1d-f).

The prominent and distinctive feature of FlumeX is its modular design. FlumeX is comprised of an experimental chamber that can
be expanded with PVC pipe into two configurations — a closed, recirculating configuration, or an open, flow-through configuration.
Laminar flow between configurations is consistent and repeatable, allowing for different types of measurements depending on the
nature of the study. The closed, recirculating configuration is ideal for physical measurements including PIV. The open, flow-through
configuration is ideal for chemical measurements in the lab that require a constant turnover or flushing of volume. Both the recir-
culating and flow-through configurations have an open and accessible experimental chamber allowing for easy care and husbandry of
sessile organisms, including corals.

FlumeX is designed to mimic the hydrodynamic environment around newly settled corals, and therefore, is designed to operate at
low to intermediate Re between 102 and 10* [37]. FlumeX produces steady, laminar flow across both configurations to successfully
grow coral on various substrates while creating a hydrodynamic environment simulating ocean conditions for lab-based experiments.

FlumeX is made with low cost, easily accessible materials (primarily acrylic and PVC) available at local hardware stores, convenient
for building replicate tanks with similar flow conditions. The presented design of FlumeX is built using 3 in, schedule-40 PVC pipes, but
flume size can easily be scaled up or scaled down using different pipe dimensions depending on experimental need.

Fig. 1. Sample applications and modifications. FlumeX is designed with 3 in PVC pipe to (a) accommodate sensors for chemical measurements in a
flow-through configuration, (b) collect physical, hydrodynamic measurements in a recirculating configuration, and (c) house biological organisms
such as newly settled coral. FlumeX is easily (d, e) scaled up (pictured is FlumeX made with 6 in PVC pipe in a recirculating configuration), or (f)
scaled down (pictured is FlumeX made with ' in PVC pipe in a recirculating configuration), depending on experimental requirements. Yellow scale
bar in each photo is 10 cm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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3. Design files summary

Design file name

File type

Open source license
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Location of the file

viewingChamber.stl
flowStraightener.stl
mountingPlate.stl

3D Print File
3D Print File
3D Print File

tileHolder.stl 3D Print File
viewingChamber.dxf CAD file
tileHolder.dxf CAD file
mountingPlate.dxf CAD file

4. Bill of materials summary

4.1. Experimental chamber (EC): Builds one

CC BY-NC
CC BY-NC
CC BY-NC
CC BY-NC
CC BY-NC
CC BY-NC
CC BY-NC

https://doi.org/10.5281/zenodo.14051748
https://doi.org/10.5281/zenodo.14051748
https://doi.org/10.5281/zenodo.14051748
https://doi.org/10.5281/zenodo.14051748
https://doi.org/10.5281/zenodo.14051748
https://doi.org/10.5281/zenodo.14051748
https://doi.org/10.5281/zenodo.14051748

Designator Component Number Cost per unit — (USD) Total cost — (USD) Source of materials Material type

EC1 12 in x 24 in x Y% in acrylic sheet 1 $21.69 $21.69 https://www.mcmaster.com Polymer

EC2 12 in x 24 in x % in PVC sheet; makes 2 1 $74.49 $74.49 https://www.mcmaster.com Polymer

EC3 3 in PVC pipe 1 $12.37 $12.37 https://www.homedepot.com  Polymer

EC4 PLA plastic 1 $20.99 $20.99 https://www.amazon.com Polymer

EC5 % inx 4 in x 12 in PVC bar 1 $23.82 $23.82 https://www.mcmaster.com Polymer
Epoxy 1 $7.48 $7.48 https://www.homedepot.com  Other: Adhesive
PVC primer/glue 1 $10.94 $10.94 https://www.homedepot.com  Other: Adhesive
Silicone sealant 1 $10.98 $10.98 https://www.homedepot.com  Polymer
Magnets (8 pack) 1 $9.99 $9.99 https://www.amazon.com Metal

4.2. Flow-through configuration (FT): Two-line system

Some materials are listed twice, based on their location in the build — on the main line (FT-M) or on the flume line(s) (FT-F). Two
options for flow meters are included - a digital and an analogue option — depending on need. PVC connections can be optionally
reinforced with adhesive(s) listed in 4.1. Experimental chamber (EC) Bill of materials (PVC primer/glue, silicone sealant), depending
on desired permanence.

Designator Component Number Cost per unit — Total cost Source of materials Material type
(USD) —-(USD)
FT-M-1 Threaded hose to % in PVC 1 $1.05 $1.05 https://www.homedepot.com Polymer
adaptor
FT-M-2 % in PVC pipe 1 $3.16 $3.16 https://www.homedepot.com Polymer
FT-M-3 ¥ in PVC 90° elbow 1 $0.79 $0.79 https://www.homedepot.com Polymer
FT-M-4 % in PVC tee 1 $0.82 $0.82 https://www.homedepot.com Polymer
FT-M-5 ¥ in PVC socket cap 1 $0.82 $0.82 https://www.homedepot.com Polymer
FT-F-1 % in PVC pipe 1 $3.16 $3.16 https://www.homedepot.com Polymer
FT-F-2 % in PVC ball valve 2 $3.22 $6.44 https://www.homedepot.com Polymer
FT-F-3 ¥ in PVC to threaded hose adaptor 4 $1.05 $4.20 https://www.homedepot.com Polymer
FT-F-4a  Flow meter (digital) 2 $24.99 $49.98 https://www.amazon.com Other: Electrical
FT-F-4b Flow meter (analog) 2 $208.22 $416.44 https://www.omega.com Other: Mechanical
FT-F-5 % in to 3 in PVC adaptor 2 $5.86 $11.72 https://www.mcmaster.com Polymer
FT-F-6 3 in PVC pipe 2 $12.37 $24.74 https://www.homedepot.com Polymer
FT-F-7 3 in PVC coupler 2 $6.86 $13.72 https://www.mcmaster.com Polymer
EC Experimental chamber 2 $153.36 $306.72 See Experimental chamber Bill of Other: Mixed (see
materials above)
FT-F-8 3 in PVC 90° elbow 2 $9.50 $19.00 https://www.mcmaster.com Polymer
PVC thread tape 1 $1.96 $1.96 https://www.homedepot.com Other: Adhesive
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4.3. Recirculating configuration (R)

Attaching the propellor to the mounting plate can occur via extra adhesive(s) listed in 4.1. Experimental chamber (EC) Bill of
materials or via screws as needed. PVC connections can be optionally reinforced with extra adhesive(s) listed in Experimental chamber
(EC) Bill of materials (PVC primer/glue, silicone sealant), depending on desired permanence.

Designator Component Number Cost per unit — (USD) Total cost —-(USD) Source of materials Material type

R1 3 in PVC pipe 1 $12.37 $12.37 https://www.homedepot.com Polymer

R2 3 in PVC coupler 2 $6.86 $13.72 https://www.mcmaster.com Polymer

R3 3 in PVC 90° elbow 4 $9.50 $38.00 https://www.mcmaster.com Polymer

R4 3in PVC tee 1 $13.93 $13.93 https://www.mcmaster.com Polymer

EC Experimental chamber 1 $153.36 $153.36 See Experimental chamber Bill of materials Other: Mixed (see above)
R5 61in x 6 in x % in PVC sheet 1 $12.65 $12.65 https://www.mcmaster.com Polymer

R6 3 in PVC pipe 1 $12.37 $12.37 https://www.homedepot.com Polymer

R7 Propellor 1 $22.99 $22.99 https://www.amazon.com Other: Electronic

R8 Power supply unit 1 $65.99 $65.99 https://www.amazon.com Other: Electronic

5. Build instructions
5.1. Experimental chamber (EC, Fig. 2)

The experimental chamber (EC) and its components are consistent across the flow-through and recirculating configurations. The
viewing chamber (EC1) serves as the observation chamber within the experimental chamber. To make the viewing chamber (EC1), cut
a 30 cm x 40 cm rectangle from a ' in acrylic sheet. Two scores along the width of the cut acrylic divide it into three rectangles — the
outer rectangles measuring 30 cm x 14.5 cm, and the inner rectangle measuring 30 cm x 10 cm. Four circular wells are engraved in the
corners of the middle rectangle on the same side as the scores to later help secure the tile-holder (EC5) during experiments. Evenly heat
the acrylic along scores with a hot wire bender and bend to form 90° angles, creating a U-shape.

Cut two mounting plates (EC2) from a % in PVC sheet. The mounting plates’ design includes legs to create a stable base for the
viewing chamber. Engrave a 1 cm wide U-shaped well into each mounting plate for the viewing chamber to rest in. Cut a horizontally
centered circle matching the thickness of the tile-holder (EC5) — % in — above the base of the U-shaped well to fit 3 in, schedule-40 PVC
pipe within the channel. Attach the mounting plates to both ends of the viewing chamber by filling the U-shaped wells with quick-
setting epoxy resin and fitting the viewing chamber into the wells. Cut two, 10 cm lengths of 3 in, schedule-40 PVC (EC3) to attach
to each mounting plate. Attach each PVC pipe section to a mounting plate with PVA glue so they protrude outwards from the viewing
chamber.

Use an FDM 3D printer to fabricate a 5 cm long flow straightener (EC4) with a diameter of 3 in to fit inside the one of the PVC pipe
sections attached to the mounting plate. The flow straightener has a hexagonal grid (hexagon circumscribed diameter = 1 cm) ensuring
laminar flow in the experimental chamber (Supplementary Fig. S1). Secure the flow straightener into one of the sections of 3 in PVC
pipe using silicone, designating an upstream end of the experimental chamber and the resulting flow direction.

A tile-holder (EC5) nests substrate samples at the bottom of the viewing chamber creating a quasi-2-dimensional landscape,
allowing for chemical and physical measurements on the surface of the substrate with no confounding effects resulting from 3-dimen-
sional fluid interactions. The shape and type of substrates tested can alter the design of the tile-holder. The presented tile-holder design

Flow
—

EC3

Fig. 2. Experimental chamber. Schematic of experimental chamber parts and assembly. The flow direction is determined based on the position of
the flow straightener (EC4).
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holds three, 3 cm x 3 cm x 1 cm tiles.

To make the tile-holder, cut a 29 cm x 9.8 cm section from a % in PVC sheet to fit the bottom of the tank, tangent to the bottom of
the 3 in PVC inlet and outlet pipes. Engrave three 3.2 cm x 3.2 cm x 1.3 cm square recesses centered along the midline of the tile-
holder and separated by 4.5 cm for sample substrate tiles. Centering the location for the tiles along the midline of the experimental
chamber minimizes the hydrodynamic effects from the side walls of the viewing chamber (Supplementary Fig. Slc-e). In diagonal
corners of the tile-holder, 1.5 cm from either edge, drill a threaded hole such that a ! in threaded bolt can be used to help remove the
tile-holder from the viewing chamber during experiments if needed.

Circular wells at the bottom of the viewing chamber are included as an optional feature to stabilize the tile-holder in strong flows.
To utilize, attach 32 mm diameter, 3 mm tall circular magnets to the bottom of the tile-holder to align with the circular wells in the
viewing chamber. Magnets will keep the tile-holder secured at the bottom of the tank. For extra stability, pair the magnets in the
circular wells with magnets outside the viewing chamber to secure the tile-holder.

5.2. Flow-through configuration (FT, Fig. 3)

The flow-through (FT) configuration of FlumeX connects to a standard hose tap and features a main line (FT-M) which branches
into multiple flume lines (FT-F). This design allows the flow-through configuration to support various installations depending on
experimental need. The presented design describes the installation of a 2-line system, supporting two flumes.

5.2.1. Main line (FT-M)

The main line connects to a hose via PVC adaptor (FT-M-1) and is made from alternating connecting % in, schedule-40 PVC pipes
(FT-M-2) and socket tee joints (FT-M-3). Connecting % in PVC pipes are all 6 cm in length. The tee supports each branching flume line
(FT-F). The final flume line connects to the main line via a 90° elbow (FT-M-4). If PIV is to be performed in the flow-through
configuration, create a PIV inlet on FT-M between the outermost and penultimate flume lines by installing a tee joint vertically
with an additional 10 cm length of PVC and a cap (FT-M-5). The PIV inlet allows for the addition of various materials to be added to the
flow, including a high-density mixture of neutrally buoyant tracer particles for flow characterization via PIV in the outermost flume
line.

a = Flow
M-1 —
FT-
M-2

FT- FT- FT- FT-
F1 F2 F1 F3

I I v
Main Line Flume Line L. N

Fig. 3. Flow-through, 2-line system. (a) Schematic and (b) photo of 2-line system for flow-through configuration with digital flow meters. In the
photo, only the bottom flume line is labeled for clarity, no PVC cap is pictured on the PIV inlet, and the hose connection (FT-M—1 and a section of
FT-M—2) are wrapped in waterproof tape to prevent leaking.
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5.2.2. Flume line (FT-F)

Flume lines are constructed identically. Beginning from the main line, the flume line consists of % in, schedule-40, connector PVC
pipe (FT-F-1) connected to a % in ball valve (FT-F-2). Following the ball valve is another length of % in connector PVC pipe connected
to a flow meter (FT-F-4) via a % in PVC to threaded hose adaptor (FT-F-3). The flow meter connects back to % in connector PVC pipe via
another % in PVC to threaded hose adaptor. The % in PVC pipe then expands to support 3 in PVC pipe via a % to 3 in PVC adaptor (FT-F-
5). This adaptor connects to a 2 ft segment of 3 in, schedule-40 PVC pipe (FT-F-7) via a coupler (FT-F-6). At the opposite end of the 2 ft
length of PVC pipe is another coupler that connects the pipe to the upstream end of the experimental chamber (EC). A 3 in PVC 90°
elbow (FT-F-8) mounted on the downstream end of the experimental chamber controls outlet flow and consequently, the height of
water in the viewing chamber.

The main line and flume lines upstream of the experimental chamber are made using % in PVC pipe which later expands to the 3 in
PVC of the experimental chamber. This allows the flow-through configuration to be installed on common taps. Additionally, the % in
pipe allows for easy measurements of the volumetric flow rate within the flumes, as instrumentation used to characterize flow in larger
diameter pipes, including 3 in PVC pipes, are tuned to measure stronger flows than the target Re range of 10%-10* The ball valve on
each flume line allows for precise control over the flow rate in individual flumes on the same line. Two different flow meter options are
included in the Bill of Materials to measure flow rate — a cheaper digital flow meter for easy use (i.e., Fig. 3b), and a more expensive
analog flow meter if the flumes are housed in a water bath (i.e., Fig. 1c).

5.3. Recirculating configuration (R, Fig. 4)

The recirculating configuration is an enclosed design comprised of the experimental chamber (EC) and 3 in, schedule-40 PVC pipe
(R1). Attach a 3 in, 90° elbow joint (R2) to the inlet of the experimental chamber, and another elbow joint (R2) to the outlet of the
experimental chamber. The short sides of the recirculating configuration are made of 10 cm lengths of 3 in, schedule-40 PVC pipe (R1)
connected to these elbows, with additional elbows at the end, forming a rectangular track. The far side of the track includes a 3 in PVC
tee joint (R3) which connects halfway between the two elbows via 3 in PVC pipe (R1). The tee joint is installed such that the open end
of the tee faces upwards to hold the propellor mount.

The propellor mount is a length of 3 in, schedule-40 PVC pipe (R5) with a plate to attach the propellor (R4) secured to the base of R5
via PVC glue. The plate has screw holes drilled into it to attach the propellor, and holes to run the electrical cabling of the propellor.
Propellor cabling runs up through R4 and R5 and connects to an external power supply unit to control the voltage and amperage
supplied to the propellor.

The recirculating configuration currently features no systematic way to set a target flow without PIV verification of the flow. Unlike
the flow-through configuration which has sections of % in PVC that can accommodate flow meters which measure low volumetric flow
rates, the 3 in design of the recirculating configuration does not easily lend itself to a volumetric flow meter that can measure such low
flow rates. However, modifications to FlumeX for experiments at different scales (i.e., smaller flume or faster flows) may allow for the
installation and use of an inline flow meter for different hydrodynamic environments in the recirculating configuration.

Propellor
mount

Fig. 4. Recirculating configuration. (a) Schematic and photos of (b) assembled recirculating configuration (c) and propellor mount. Note that the
power supply unit is not included in the diagrams.
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6. Operation instructions
6.1. Flow-through configuration

Ensure flume lines are level with the ground. Connect the flow-through main line to the water supply. Turn on the water supply and
adjust pressure as needed via the main water supply and fine-tune the flow for each experimental chamber using the ball valves along
each flume line. The volumetric flow rate can be observed via the flow meters installed along each flume line.

Due to the outflow design of the flumes, it is recommended they are used on a wet table or in a bath to contain the outflow of water.
The wet table or bath can be connected to a drainage system for long-term use.

6.2. Recirculating configuration

Ensure the experimental chamber is level with the ground. Fill the recirculating configuration with water. Control the flow of water
via the power supplied to the propellor.

7. Validation and characterization
7.1. Computer simulations of laminar flows

During the initial design stage, COMSOL-based computer simulations were iteratively used to predict the flow conditions
achievable in FlumeX, informing fabrication decisions. A CAD model of FlumeX’s experimental chamber was imported into COMSOL.
Flows within reefs can range from 1 cm s ' to 4 cm s ' [33,36,38]. The simulations here used an inlet velocity of 1 cm s, targeting the
lower end of this range. Due to the lower target Re (102—1 04), simulations were run with and without flow straighteners to determine if
a flow straightener was worth incorporating into the final design. Simulations without a flow straightener were characterized by
nonhomogeneous fluid flows in the viewing chamber, especially near the bottom side walls (Supplementary Fig. S1, c—e, left panels).
Simulations that included a flow straightener upstream of the viewing chamber resulted in comparatively more homogeneous and
laminar flows (Supplementary Fig. S1, c—e, right panels), particularly along the centerline (Supplementary Fig. S1e). Even with a flow
straightener, flow profiles close to the side walls suffer unavoidable heterogeneities due to frictional effects from the walls
(Supplementary Fig. S1, c—d). Hence, all fluid flow measurements and experiments are carried out along the center line of the viewing
chamber (Supplementary Fig. Sle, right panel).

7.2. 2-Dimensional particle image velocimetry (PIV)

Fluid flows and FlumeX configurations were verified and matched using 2-dimensional PIV. The experimental setup for carrying
out PIV measurements is shown in Supplementary Fig. S2. Viewing chambers were illuminated with a 1350 Im LED illumination unit
(LaVision) mounted above the experimental chamber creating a light sheet. The thickness of the light sheet was reduced to a 1 cm
plane by adding an aperture to manually block incident light. An Imager CS2 5 camera mounted with a L. 60 mm focal length lens (F/
2.8, 2:1 macro, LaVision) with a full view of 2448 x 2064 pixels recorded data. Flume verification took place over a cross section
parallel to flow along the center line of the viewing chamber, spanning the width and height of the viewing chamber, resulting in a
resolution across configurations of approximately 80 px cm ™!, Recordings in the flow-through configuration occurred at 40 Hz for 10's
and in the recirculating configuration at 20 Hz for 10 s.

Flumes were seeded with 60 pm diameter polyamide tracer particles (LaVision). In the recirculating configuration, the entire
volume of water in the flume was seeded in bulk, ensuring a constant seed density. In the flow-through configuration, a high-density
mixture of polyamide particles was pipetted into the flume section at the PIV inlet and mixed with the water as it travelled through the
flume line upstream of the experimental chamber. Recording was manually started once particles in the viewing chamber were at a
near-uniform density. Multiple recordings were taken as the particles moved through the viewing chamber, and the recording with the
most uniformly distributed particles was selected for PIV analysis.

Data was processed in DaVis 11.0.0.196 (LaVision). The PIV data post-processing in flow-through and recirculating configurations
was performed using a bicubic interpolation to interpolate vectors, 5 x 5 denoising, and a symmetrical shift correction mode. Pixels
were interpolated using a spline interpolation and a direct correlation algorithm between frames, and cell sizes were weighted as a
round cell. In the flow-through configuration, the window interrogation size was 64 px, resulting in an average correlation value of
0.84 px. In the recirculating configuration, the window interrogation size was 16 px, resulting in an average correlation value of 0.97
pX.

7.3. Matching flow conditions with theoretical fluid dynamics

Ten different flow conditions were tested in the flow-through configurations by varying the volumetric flow rate, and nine different
flow conditions were tested in the recirculating configuration based on the voltage of the external power supply unit powering the
propeller. Flow-through conditions ranged from 0.5 gal min~! (0.9 L min™') to 1.4 gal min~"! (5.3 L min™!) at 0.1 gal min~! (0.4 L
min_l) intervals based on the tolerance of the flow meter (based on U.S. units), and recirculating conditions ranged from the minimal
voltage applied to power the propellor (0.90 V) to the voltage where the laminar flow began to break down and vortices in the
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boundary layer appeared (1.30 V) at 0.05 V intervals. It is important to note that voltage measurements reported here will not be
consistent over different installations of the recirculation configurations, as voltage and amperage depend on the number and type of
electronics drawing from the same power source. Flow conditions within and across flume configurations were compared and matched
by assessing boundary layer height, Reynolds number, maximum velocity, and average flow speed in the viewing chamber (Table 1).
Laminar boundary layers for the flows generated in FlumeX configurations were compared to the boundary layers predicted by
theory to ensure the flows generated were laminar and matched theory as closely as possible. The boundary layer height, by definition,
is the height normal to the substrate where flow velocity has reached 99 % of its freestream velocity [37]. The theoretical boundary
layer height (699) at location, X, downstream from the starting point of the experimental chamber (where X = 0), is calculated as:

5X XVp
99 (X) ~ :Rexy = — 1
99 (X) JRex €x U (€9)]

where Rey is the Reynolds number at location X,V is the maximum velocity in the entire tank for a given flow condition (m s™1), p is the
fluid density (1024.26 kg m~3), and y is the dynamic viscosity of the fluid (1.027 x 10~Pa s) [39]. To calculate the boundary layer
height from experimental data, at each X-position along the length of the tank, the lowest height where the fluid reached 99 % of the
freestream velocity along that profile was found. Boundary layer error was calculated for each flow condition at location, X, as the
difference between the theoretical boundary layer height at X and the experimental boundary layer height at X (Fig. 5). The theoretical
boundary layer heights across the viewing chamber range from 10.45 mm (minimum) to 17.69 mm (maximum) in height in the flow-
through configuration, and from 14.54 mm (minimum) to 23.38 mm (maximum) in the recirculating configuration. FlumeX best
matches the boundary layer in the upstream portions of the viewing chamber, and less towards the downstream end of the viewing
chamber.

The average boundary layer error in the flow-through configuration is 15.48 + 7.58 mm and in the recirculating configuration is
—2.64 + 6.09 mm (mean =+ standard deviation). While the error observed in the recirculating configuration is close to zero, indicating
that the hydrodynamic environment in FlumeX matches laminar theory well, the error in the flow-through configuration is higher. This
may be a result of fluctuations in the flow coming into the system controlled by plumbing outside the build of FlumeX. Additionally, it
is likely that uneven particle distribution using PIV techniques further skews the velocity fields. Although the PIV inlet is positioned
early enough in the flow such that the particles are well-mixed, it is difficult to achieve a uniform particle field in the EC, as particles
are still subject to velocity gradients within the flume line before the EC. Effective PIV is heavily dependent on uniform particle
distribution, and regionally, areas with a lower density of particles including the fluid boundary layer, may be inaccurate and tend to
have lower measured values than actual [40,41]. Lower velocity measurements in the boundary layer would result in the calculated
boundary layer being higher than theory predicts. Although PIV in the flow-through configuration was performed on a reasonably even
distribution of particles, the authors note that it was not a uniform distribution, comparable to measurements in the recirculating
configuration. Although the average boundary layer height in the flow-through configuration is greater than in the recirculating
configuration, this error falls within a reasonable limit, indicating that the hydrodynamic environments created in FlumeX - partic-
ularly in the recirculating configuration — match laminar theory quite well.

The Reynolds number was calculated for each tested flow condition as

(2

Table 1
Validation conditions. All tested hydrodynamic conditions for the flow-through and recirculating configurations of FlumeX. Where appropriate, data
is presented as mean =+ standard deviation.

FlumeX External control Average boundary layer Experimental chamber =~ Maximum velocity (cm  Average flow speed (cm
configuration parameter error (cm) Re s sh
Flow-through 0.5 gal min~! 1.83 +£1.02 660 2.20 0.80 + 0.68
0.6 gal min~? 1.67 £ 0.78 820 2.75 0.95 £+ 0.69
0.7 gal min ! 1.71 £ 0.64 860 2.87 1.11 £ 0.82
0.8 gal min~! 1.48 + 0.66 880 2.94 1.23 +0.76
0.9 gal min~? 1.61 + 0.67 890 2.99 1.28 + 0.89
1.0 gal min~? 1.83 £0.90 990 3.31 1.45 £ 0.96
1.1 gal min~* 0.97 £ 0.62 1,200 3.95 1.67 £ 0.95
1.2 gal min~! 1.50 + 0.70 1,300 4.24 1.96 + 1.01
1.3 gal min~? 1.43 £ 0.54 1,300 4.30 1.96 + 1.10
1.4 gal min~’ 1.46 + 0.54 1,400 4.55 2.28 £1.14
Recirculating 0.90 V —0.26 + 0.25 300 1.00 0.55 + 0.25
095V 0.34 £ 0.47 380 1.27 0.69 £+ 0.33
1.00V —0.75 £ 0.43 470 1.58 0.92 £+ 0.37
1.05V —0.63 + 0.43 550 1.83 1.13 + 0.39
110V 0.01 £0.81 570 1.90 1.09 + 0.49
115V —0.26 £+ 0.54 660 2.19 1.31 £ 0.50
1.20V —0.52 +0.38 700 2.36 1.41 +£0.53
1.25V —0.12 £+ 0.44 790 2.65 1.55 + 0.61
1.30V —0.19 £ 0.70 760 2.54 1.42 £ 0.57
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Fig. 5. Boundary layer error. Boundary layer error (Sgxperiments — OTheory) at flume length, X, tested at different conditions in the flow-through
(dashed lines) and recirculating (solid lines) configurations. The different cases are colored coded by their average bulk flow speed.

with L as the length of the viewing chamber (0.30 m). Reynolds number in the flow-through configuration ranged from 660 to 1400
and from 300 to 760 in the recirculating configuration. These numbers fall within the target range of Reynolds numbers between 102
and 10* for laminar flow conditions on coral reefs [37,38].

Flow velocity data was used to match hydrodynamic landscapes between flume configurations. Velocity profiles were averaged
over time to generate the average velocity profiles for different conditions in the flow-through and recirculating configurations (Fig. 6,
Supplementary Figs. S3 and S4). Average flow speed was calculated by averaging all speed measurements across time and location in
the viewing chamber. Maximum velocities in the flow-through configuration ranged from 2.20 cm s ! to 4.55 cm s~ and from 1.00

Flow-through Recirculating

0.5 gal min, Re = 600 — 0.90V, Re =300 —
'E £ £
E 40 3 >
50 100 150 = 0 50 100 150 200 =
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*  Experimental BL
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Fig. 6. Flume Verification. Velocity profiles for the lowest (top), middle (middle), and highest (bottom) flow conditions tested in the flow-through
(left) and recirculating (right) configurations of FlumeX with velocity vectors overlayed. The boundary layers (BL) calculated in the experiment
based on observed flow conditions (green) and calculated from theory (blue) are overlayed on the figures. A greater upper limit was tested in the
flow-through configuration than the recirculating configuration, and a lesser lower limit was tested in the recirculating configuration than the flow-
through configuration. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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cm s~! to 2.54 cm s™! in the recirculating configuration. Average flow speed ranged from 0.80 cm s~! to 2.28 cm s~ in the flow-
through configuration and from 0.55 cm s™! to 1.42 cm s ! in the recirculating configuration. By adjusting and cross-referencing
these data between FlumeX’s configurations, it is possible to obtain similar flows across flume configurations.
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