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Abstract

Coral reef ecosystem health is rapidly declining worldwide. Restoration
strategies such as propagation and outplanting aim to recover reef function
but can be hindered by slow growth rates that limit scalability, necessitating
technologies that accelerate growth to match the scale of reef degradation.
Electrochemically induced alkalinity enhancement (eAE) offers a promising
approach to locally enhance carbonate chemistry and favor calcification. We
developed replicate eAE systems composed of steel cathodes and a platinized
anode housed within an evacuation pump to remove oxidative waste
products. System performance was evaluated with carbonate chemistry
incubations, microelectrode profiling, and two laboratory experiments with
Acropora cervicornis and Pseudodiploria clivosa microfragments. The eAE
system created a high alkalinity microenvironment under 1 cm s?! flow
speeds, elevating pHt by 0.14 = 0.02 to 8.16 at the height of the ‘short’ 5 mm
P. clivosa microfragments. At 3 cm s'1, pHt at 5 mm was 8.03, and under both
flow speeds, pHt returned to bulk levels (8.02) at the height of the 15 mm 7.
clivosa and 50 mm A. cervicornis fragments. After sixty days, short P. clivosa
microfragments exposed to eAE calcified 43% faster and had 53% greater
planar tissue growth rates than controls. These enhancements occurred
exclusively within the elevated pH boundary layer and did not extend to taller
fragments (=15 mm), highlighting eAE’s limited spatial extent. Our findings
demonstrate eAE’s potential to accelerate microfragment skirting rates.
Integrating eAE into coral propagation pipelines could enhance nursery
productivity, reduce generation times, and improve the overall scalability of
reef restoration efforts.

Keywords: coral restoration, alkalinity enhancement, coral growth,
geochemical engineering
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Introduction

Coral reefs rely on a robust, three-dimensional structure to sustain the
highest marine species concentrations, collectively generating and
protecting billions of USD in value for the global economy (Graham and Nash
2013; Torres-Pulliza et al. 2020). Unfortunately, the rapid decline in
carbonate production driven by the compounding effects of local and global
stressors has eroded reef structural complexity and limited their ecosystem
services (Alvarez-Filip et al. 2009; Perry et al. 2013).

To combat these challenges, resource managers have developed active
restoration programs that propagate and outplant corals back onto the reef
(Young et al. 2012; Bostrom-Einarsson et al. 2020). These efforts are
increasingly acknowledged as essential to ensure coral reef persistence in an
era marked by rapid global change (Kleypas et al. 2021; Webb et al. 2023).
However, the current scale of these operations and their output is insufficient
to meet the magnitude of the stressors acting upon them or the spatial extent
of the degradation. Therefore, in addition to stressor mitigation, effective
strategies must be implemented throughout the restoration pipeline to
conserve ecosystem services.

Slow growth rates inherently constrain coral restoration operations, but
targeted interventions offer opportunities to optimize and accelerate growth.
To this end, the restoration community has increasingly adopted the
microfragmentation method that involves cutting large mounding corals into
multiple small pieces less than 10 cm? (Forsman et al. 2015). Practitioners
cultivate fragments in nurseries before returning the corals to the reef, where
tenfold increases in planar tissue growth rates compared to larger fragments
can be achieved (Page et al. 2018).

An alternative approach to increase growth rates is alkalinity
enhancement (AE). AE with carbonate or bicarbonate mineral addition has
been shown to increase growth rates between twofold and tenfold and
increase the survivorship of coral recruits (Marubini and Thake 1999;
Langdon et al. 2000; Herfort et al. 2008; Ruszczyk et al. 2025). However,
these successes were limited to closed, experimental systems with relatively
small volumes, and an AE trial on a reef flat resulted in increases in growth
rates two orders of magnitude lower than those observed in laboratory
studies (Albright et al. 2016). Alternatively, seawater electrolysis can directly
increase alkalinity (Willauer et al. 2014; Eisaman et al. 2023).
Electrochemically induced alkalinity enhancement (eAE) may be favored
because it selectively modifies alkalinity in a small volume of seawater
directly surrounding the corals, rather than requiring alteration of the bulk
seawater (Hilbertz and Goreau 1996).

Throughout its four-decade history, there has been encouraging evidence
that eAE improves coral growth rates (Goreau 2013, 2022). Small-scale field
deployments have observed a wide range of growth rate enhancements from
approximately 30% to tenfold, and similar enhancements have been observed
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in limited laboratory studies (Sabater and Yap 2002; Stromberg et al. 2010;
Huang et al. 2020; Goreau 2022; Samidon et al. 2022).

However, multiple eAE studies have observed no increases in growth
rates and documented declines in survivorship and coral health (Borell et al.
2010; Romatzki 2014; Chavanich et al. 2015). Confounding results may be
attributed to environmental factors such as flow, or species-specific or
morphological differences, where only certain size classes or coral shapes
experience enhanced growth. Moreover, the region of AE may be spatially
limited to regions most proximal to the cathode where the alkalinity is
leached (Sabater and Yap 2002; Samidon et al. 2022). Finally, there is
concern that the growth enhancements are non-linear such that the corals
initially experience rapid increases in growth during the first three to six
months, followed by growth rates coalescing with controls (Sabater and Yap
2004; Huang et al. 2020). Ultimately, these concerns, coupled with the cross-
disciplinary challenges, have limited further exploration of the technology
and widespread adoption within the restoration community (Bostrom-
Einarsson et al. 2020).

Therefore, this study aims to identify the mechanisms constraining eAE
and investigate whether eAE develops an enhanced microenvironment that
the restoration community can reliably leverage. To test the effect of eAE on
coral propagation, we used pH microsensors and incubations to measure eAE
altered carbonate chemistry, and we conducted two coral growth
experiments with Acropora cervicornis and Pseudodiploria clivosa.

Methods

eAE System Construction

Four identical eAE systems were constructed in flow-through aquariums.
Cathodes were prepared by trimming, etching, and cleaning 2.5 cm steel
weld studs (~20 cm? surface area; 93865A540, McMaster-Carr). Identically
sized acrylic pucks were used as inert controls. The anode consisted of a 7.5
cm by 15.0 cm titanium mesh with a 0.5 pm platinum layer fashioned into a
cylinder with a diameter of 5 cm (TI-M-01-ME.PTC, American Elements),
providing an estimated surface area of 1,500 cm?, sufficiently larger than the
total surface area of the cathodes (i.e., > 5:1) to prevent the anodic reactions
from limiting the cathodic reactions (Bard and Faulkner 2001). Electrodes
were fixed to PVC-jacketed copper wire, and all connections were sealed with
an epoxy coating. The anode was housed in a 5 cm PVC pipe, which was
connected to a brushless peristaltic pump (A200BX, Anko) designed to
evacuate chlorine and acidity generated at the anode. Cathodes and inert
substrates were arranged in a circular pattern around the anode pump
(Figure 1; Figure S1) and connected in series to a power supply (MX100QP,
Aim-TTi) regulated by a custom LabView script (National Instruments) to
control and log power output.

eAE System Performance
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Impact of eAE on seawater carbonate chemistry

Seawater incubations were conducted to estimate the changes in
carbonate chemistry above the eAE cathodes as a function of electrical
current density (0.5, 1, and 3 A/m2), as well as above an inert acrylic puck
serving as the control condition that was not connected to the circuit. A
scaled-down eAE system with a single cathode was prepared in a closed 4 L
polypropylene container. The anode pump did not evacuate seawater for
these experiments to maintain a constant water volume. A recirculating pump
(Nano 565, Koralia) provided constant water flow in the incubation chamber
throughout the three-hour incubation. Three incubations per electrical
current density and control conditions were performed for a total of 12
incubations. For each incubation, the chamber was filled with 1 pm filtered
seawater collected from Bear Cut, Miami, Florida. Water samples (500 mL)
were collected before and after the incubations and fixed with the addition of
200 pL mercuric chloride. Samples were analyzed for the complete
determination of the carbonate chemistry system including pH (8454 UV-Vis
Spectrophotometer, Agilent Cary), total alkalinity (Ar; 855 Robotic
Titrosampler, Metrohm), dissolved inorganic carbon (DIC; AS-C3, Apollo
SciTech), and salinity (DMA 5000 M, Anton Paar). Additional 40 mL water
samples were collected, filtered through 0.45 pm syringe filters, and
immediately frozen for analysis of nutrients (nitrate, nitrite, phosphate and
ammonium; AutoAnalyzer3, SEAL). Nutrient concentrations were minimal
and were used to adjust the contribution of organic alkalinity prior to
calculating the carbonate chemistry system with the seacarb library (Gattuso
et al. 2024) in the R environment to determine the pCO, and the aragonite
saturation state (Qar). Changes in carbonate chemistry from final and initial
samples were standardized by the incubation time and were blank-corrected
from the control incubations to account for non-eAE induced changes in
carbonate chemistry due to microbial activity and/or evaporation (Smith and
Kinsey 1978; Schoepf et al. 2017).

Impact of flow speeds and electrical current density on the pH boundary
layer

The pH boundary layer above the cathode was quantified as a function of
water flow and electrical current density using the single cathode setup,
which was housed in an open-top, flow-through flume. The flume was chosen
to prevent the buildup of an upstream concentration gradient. Volumetric
flows through the working section of the flume were calibrated with particle
image velocimetry to determine the bulk flow mean velocities, hereinafter
referred to as flow speeds, and were set to 0, 1, and 3 cm s, equating to a
volumetric flow rate of 0, 2.3, and 6.4 L min! (Ruszczyk et al. 2024). These
three flow speeds were chosen to produce the thickest possible boundary
layers, the boundary layers expected during the growth experiments, and the
boundary layers expected at a local coral nursery based on the average flow
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speeds on a reef approximately 1 km from the University of Miami Coral
Nursery (Enochs et al. 2023). For each investigation, the cathode or inert
puck was placed in the center of the flume and the anode was positioned 15
cm downstream. The anode pump did not evacuate seawater to maintain
steady flow conditions across the tested conditions. The flume and eAE
system were operated at set flow speed and electrical current density for two
hours prior to profiling to allow steady-state pH conditions to develop.

pH profiles were measured with a microprofiling system equipped with a
pH microelectrode (pH-50, Unisense), calibrated daily with NBS buffers.
Values of NBS-scale pH (pHngs) were converted to total scale (pHt) using
seacarb. The microelectrode tip was initially positioned at the cathode
surface with the aid of a camera (Imager CX2, LaVision) and moved vertically
upward into the water column with a micromanipulator (MM33-2, Unisense).
The pH was measured at 37 steps spanning 2.5 cm for each profile, and the
average of 10 measurements in 30 seconds was taken as the individual step’s
pH (Supplementary Methods). Profiles were initially standardized by
converting pHr into [H*] and dividing the [H*] of each step by the bulk [H*]
of its respective profile. To account for minor variations among replicate
profiles, each standardized profile was then multiplied by the average bulk
[H*] across all profiles and converted back into pHt. These standardized pH
profiles were used in all subsequent analyses (Schoepf et al. 2018).
Hyperbolic tangent models were fit to the profiles, and the pH boundary layer
heights were estimated from the models (Nishihara and Ackerman 2007).

pH profiles were collected to investigate the impact of flow speed and
current density on pH boundary layer height above the cathode using the
previously described methods. To investigate the impact of flow speed on pH
boundary layer height above the cathode, three replicate pH profiles were
collected at flow speeds of 0, 1, and 3 cm s'! using a fixed electrical current
density of 1 A m2. To investigate the impact of electrical current density on
pH boundary layer height above the cathode, three replicate pH profiles were
collected at electrical current densities of 0.5, 1, and 3 A m2, as well as above
an inert acrylic puck, at a constant flow speed of 1 cm s1.

eAE Impact on Coral Growth
Impact of eAE on Acropora cervicornis

To investigate the impact of eAE on the growth and fitness of a species
frequently used in Atlantic coral propagation and restoration, eight
fragments from seven genets (56 fragments) were collected from the
University of Miami Coral Nursery (25.6763°N 80.0987°W, 8 m depth).
Fragments were trimmed to five centimeters with a single apical tip, and two
replicates per genet were randomly distributed to four separate aquariums.
Fragments were then affixed to either a cathode or an inert acrylic puck with
cyanoacrylate glue (Coral Glue Gel, Bulk Reef Supply). Thus, each aquarium
held an eAE and control fragment from each genet with replication across
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four aquariums. Additionally, each aquarium contained three blank cathodes,
referred hereinafter as bare eAE substrates, that were partially covered with
cyanoacrylate glue to simulate the surface area covered by a coral and
estimate total abiotic precipitation. Corals were allowed to heal and acclimate
to the aquarium for one week prior to initiating the experiment.

Following the acclimation period, the eAE system was set to maintain a
current density 1 A m2. The cathodic reduction potential was measured at -
1.15 V/AgCl, placing the system in the water reduction domain (Carré et al.
2020). Treatment conditions were maintained for 60 days (October to
December 2023). Throughout, aquaria were maintained following Enochs et
al. (2018). Briefly, fresh seawater from Biscayne Bay was UV-sterilized,
filtered, and flowed into independent 150 L aquariums through weekly-
calibrated needle valves at 700 mL min-!, resulting in a turnover every 3.6 h.
The anode pump evacuated water at 300 mL min!, with daily calibration.
Temperature (27° C) was monitored (TTD25C, ProSense) and controlled with
a 300 W heater (TH300, Finnex) and a titanium chiller coil (Hotspot Energy).
Light was provided by LED arrays (Radion XR30 G6 PRO, EcoTech Marine),
set with a three-hour dawn and dusk ramp and a six-hour, static mid-day light
level as measured at the coral surface (250 pmol m~2 s—1; MQ-510, Apogee).
Bulk pH in the tank was monitored continuously with a Durafet pH electrode
(Honeywell), and discrete water samples were collected twice weekly to
calibrate pH probes and determine the carbonate chemistry system including
pH, TA, DIC, salinity, pCO,, and Qa, as described previously. Corals were
target fed 5 mL of a 3.3g L' concentrated slurry (Reef-Roids, Polyp Labs) two
times per week.

Coral and cathode mass was measured using the buoyant weight
technique (Jokiel et al. 1978), using a calibrated analytical balance (Pioneer
0.0001 g precision, Ohaus) every two weeks. Corals were suspended from
tungsten wire (0.05 mm) in a temperature-controlled (27° C) seawater bath.
Temperature and salinity were recorded during each mass measurement with
a conductivity meter (EcoSense EC300A, YSI) and converted into density with
the seacarb package. Calcification was calculated as the difference in the
weekly mass and was standardized to colony surface area as determined from
3D scanning (HDI Advance R2, 3D3 Solutions) at the beginning of the
experiment following the methods of Enochs et a/. (2014). For corals grown
on eAE substrates, an adjusted -calcification rate was calculated by
subtracting the contribution of abiotic mineral precipitation as determined
from the mean growth rate of the bare eAE substrates. Coral health and
survival were assessed visually by monitoring polyp expansion and
discoloration.

Impact of eAE on Pseudodiploria clivosa fragments with different heights

A second experiment was conducted to test whether eAE influenced the
brain coral P. c/ivosa microfragments’ growth rate and whether distance from
the cathode (fragment height) influenced growth rates. Eight P. clivosa
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fragments from six genets (48 fragments) were collected from the University
of Miami Coral Nursery. Fragments were trimmed into 2.25 cm? squares with
a diamond-bit band saw (C-40, Gryphon). The heights of the corals were
trimmed by removing part of the skeleton below the tissue layer, and the
fragments were evenly divided into short (5 mm) and tall (15 mm) fragment
height groups (Figure 1). The heights were chosen to, respectively, place the
corals inside and outside of the pH boundary layer. Four aquariums were
assigned as either eAE or control, and the corals were randomly distributed
across the aquariums. Thus, each aquarium held a tall and short fragment
from each genet. Corals in eAE aquariums were affixed to the steel cathodes,
and corals in the control aquariums were affixed to the inert acrylic pucks.
Additionally, the two eAE aquariums received three blank cathodes that were
partially covered with cyanoacrylate glue to simulate the surface area
covered by a coral and estimate total abiotic precipitation. Corals were
allowed to heal and acclimate to the aquarium for one week prior to initiating
the experiment.

Following the acclimation period, electrochemical conditions in the eAE
aquaria were set to match those of the A. cervicornis experiment. Treatment
conditions were maintained for 60 days from February to April 2024. During
this period, corals were maintained in polycarbonate aquaria (50 L; Cambro),
which were housed within two larger fiberglass water baths, each containing
one eAE aquarium and one control aquarium. Each aquarium was equipped
and programmed identically to the previous experiment, including a
circulation pump, aquarium heater, temperature recorder, and LED array.
Continuous pH monitoring was not performed in this experiment, as no
measurable bulk pH change had been observed in the initial study. Weekly
water samples, however, were collected to characterize the complete
carbonate chemistry system, including pH, using methods consistent with the
previous growth experiment. Aquaria were continuously flushed with fresh
filtered seawater at a rate of 500 mL min~?, resulting in a complete turnover
every 2 hours. Anode chambers were evacuated at 300 mL min~?, with flow
rates calibrated daily. Corals were individually target-fed twice weekly with
5 mL of the 3.3g L'! concentrated slurry (Reef-Roids, Polyp Labs).

Gross calcification rates were measured using methods identical to those
of the A. cervicornis experiment. For this experiment, the eAE substrates
received additional cleaning on the underside of the cathodes at the ring
terminal junction with a wire brush to ensure electrical continuity.
Consequently, reported abiotic mineral precipitation rates are likely
underestimates, but cleaning regimens were uniform within each experiment
for both bare eAE and coral eAE substrates. To assess growth independent of
abiotic precipitation, planar images were collected in a camera rig that
consistently maintained the corals at a fixed distance from the camera
(DeMerlis et al. 2022). The images were calibrated with Fiji (Schindelin et al.
2012), and the planar areas covered by live tissue were recorded. Planar
tissue growth rates were estimated from slopes calculated by the estimated
marginal means of repeated measures mixed-effects models. Image analysis
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error analysis was estimated by measuring the fixed diameter of the
substrates in all photos and was deemed consistent and negligible.

At the conclusion of the experiment, the dark-adapted vyield of
photosystem II (Fv/Fm) was measured for all corals to determine if eAE
induced measurable changes in coral photophysiology. To measure Fv/Fm,
corals were first dark-acclimated for 30 min following the conclusion of the
programmed sunset and then measured using an imaging pulse amplitude-
modulated fluorometer (Imaging-PAM MAXI Version, Walz, Germany). A
circular region of interest was digitally centered on each coral fragment, and
the software settings were set following Palacio-Castro et al (2022):
measuring light intensity = 1; measuring light frequency = 1; dampening =
2; saturating pulse intensity = 7; and saturating pulse width = 4. Gain was
manually adjusted to elicit an FT measurement above the 0.12 threshold.

Statistics and Data Analysis

All statistical analyses were performed in the R environment (v4.4.1, R
Core Team 2024). Model residuals were assessed for normality and
homogeneity of variance both visually and with formal tests including
Shapiro-Wilk tests for normality and Levene’s test for homoscedasticity.
When assumptions were met, one-way ANOVAs were used, followed by
Tukey's post-hoc tests for multiple pairwise comparisons. In cases where
assumptions were violated or the design included repeated measures or
nesting structure of aquarium replicates, linear mixed-effects models (LMMs)
or generalized linear mixed-effects models (GLMMs) were fit as appropriate.
LMMs were fit using the Imer function and GLMMs were fit using the glmer
function from the lme4 package. For LMMs, Satterthwaite’s approximation
was used to estimate degrees of freedom via the ImerTest package, and Type
IIT ANOVAs were performed. For GLMMs, models were fit with log-link
functions and Wald #tests assuming infinite degrees of freedom were
reported. For repeated measures data including coral masses and planar
areas, the coral ID was included as an additional random effect. Post hoc
comparisons of estimated marginal means (EMMs) were conducted using the
emmeans package with Tukey adjustment for multiple comparisons for all
mixed effects models. In the analysis of planar areas over time, rates were
estimated as slopes using emtrends, and percent differences between
treatment groups were calculated from these slope estimates. Statistical
significance for all models was evaluated at a = 0.05 with adjustments for
multiple comparisons as appropriate.

Results

eAE System Performance

Impact of eAE on seawater carbonate chemistry

10
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Closed-system incubations revealed a significant effect of electrical
current density on the net decrease in At during the three-hour incubation
period (ANOVA F(2, 6) = 51.94, p < 0.001). Alkalinity decreased significantly
faster at the highest electrical current density of 3 A m=2 (-162 + 22 pmol kg1
h-l; +1 SD) compared to both 1 A m=2 (-38 + 14 pymol kg! h'l; Tukey’s HSD, p
< 0.001)and 0.5 Am=2(-15 £ 21 pmol kg'! h'1; p < 0.001), while no significant
difference was observed between the two lower electrical current densities
(Figure S4). In contrast, there were no significant differences in DIC changes
among the three treatments: 3 A m2 (-24 = 8 ymol kg'! h'l), 1 Am2 (-7 £ 6
pmol kg1 h-1) and 0.5 A m?2 (-9 + 12 pmol kg'! h'l). Consequently, there were
significant differences observed in the calculated changes of pCO2, [CO3],
[HCO3], and [CO3%] across treatments during the incubations (Table S1).

Impact of water flow and electrical current density on the pH boundary
layer

pH microprofiles above the cathodes revealed a locally enhanced
microenvironment, the thickness and magnitude of which were modulated by
electrical current density and flow speed (Table S2). Across all profiles, the
pHT was greater than 8.70 at the cathode-seawater interface (height = 0 mm)
and attenuated to 8.02 in the bulk water (height = 25 mm).

Under constant electrical current density (1 A m?2) and varying flow
speeds, the pHt at the cathode-seawater interface was consistently elevated
(8.87 = 0.02) compared to the bulk water and was indistinguishable between
profiles (Figure 2). The pH boundary layer height decreased significantly with
increasing flow speed (ANOVA F(2, 6) = 100.5, p < 0.0001), with the pH
boundary layer significantly thicker at 0 cm s (21.34 £ 0.08 mm) compared
toboth 1 cm s (15.05 + 1.82 mm; p <0.01) and 3 cm s! (5.92 + 1.44 mm; p
< 0.0001). All pairwise comparisons of pH boundary layer heights among flow
speeds were statistically significant (Table S3). Additionally, significant
differences in pHt were observed at 5 mm above the cathode (ANOVA F(2, 6)
= 100.9, p < 0.0001). At this height, pHt was significantly higher at a flow
speed of 0 cm s! (8.22 = 0.01) compared to both 1 cm s (8.16 = 0.02; p <
0.05) and 3 cm s! (8.03 = 0.01; p < 0.0001). At 15 mm, pHr differences
remained significant (ANOVA F(2, 6) = 358.3 , p <0.00001), but only the 0
cm s1(8.05 £ 0.00; p < 0.00001) remained elevated relative to the bulk flow,
while both 1 cm s! and 3 cm s'! conditions merged with bulk values (Table
S2). There were no significant differences observed in the pHt at 0 mm above
the cathode.

Under constant flow speed (1 cm s!) and varying electrical current
densities, the pHt at the cathode-seawater interface was consistently
elevated relative to the bulk water and differed significantly among
treatments (ANOVA F(2, 6) = 60.0, p < 0.001). Interface pHt was lowest at
0.5 Am= (8.69 + 0.04), significantly increasing at 1.0 Am?2 (8.87 £ 0.02; p <
0.01), and 3.0 Am= (9.02 = 0.05; p < 0.0001), with all pairwise comparisons
between electrical current densities being statistically significant (Figure
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S5). Boundary layer height also increased significantly with increasing
electrical current density (ANOVA F(2, 6) =145.6, p <0.0001). The thinnest
pH boundary layer was observed at 0.5 A m? (10.31 = 0.82 mm), compared
to significantly thicker pH boundary layers at 1.0 A m-2 (14.64 + 0.85 mm; p
< 0.01)and 3.0 Am=(21.19 = 0.68 mm; p <0.00001). All pairwise differences
in pH boundary layer heights among electrical current densities were
statistically significant (Table S3). At 5 mm above the cathode, pHt varied
significantly with electrical current density (ANOVA F(2, 6) = 50.8, p <
0.001). pHt at 0.5 A m*2 (8.06 = 0.01) was significantly lower than at 1.0 A
m2 (8.15 = 0.02; p < 0.001) and 3.0 A m2 (8.19 = 0.01; p <0.001), though
there was no significant difference between the latter two (p > 0.05). At 15
mm above the cathodes, pHrt differences remained significant among the
electrical current densities (ANOVA F(2, 6) = 139.2, p <0.00001), but only
the 3 A m2 treatment (8.04 = 0.00; p < 0.0001) remained elevated relative
to the bulk flow. The 0.5 A m2 and 1.0 A m2 treatments had pHrt values
indistinguishable from bulk values (Table S2). In contrast, all profiles
measured above inert acrylic pucks showed no pHt elevation and,
consequently, no detectable pH boundary layer (Figure S5).

The pH boundary layer heights during both growth experiments most
closely resembled those observed at a flow speed of 1 cm s! and an electrical
current density of 1 A m2, where the pHt was 8.16 £ 0.02 at 5 mm and 8.02
+ 0.00 at 15 mm above the cathode (Table S2).

eAE Impact on Coral Growth
Impact of eAE on Acropora cervicornis

Bulk water carbonate chemistry (Table 1) did not differ significantly
among aquarium replicates within the A. cervicornis experiment. The water
chemistry was stable throughout the experiment except for a decrease in At
and salinity over the course of November, which is likely attributed to
unseasonably high rainfall in Miami (total: 23.8 cm; climatological anomaly:
14.8 cm; NOAA 2024).

All A. cervicornis fragments survived the 60-day experiment, and there
were no signs of declining health in any of the corals. Corals grown on the
inert acrylic pucks grew at an average rate of 6.70 + 4.47 mg d-!, granting
an average area-standardized daily calcification rate of 0.37 = 0.26 mg cm™
d! (Figure 3). The bare eAE substrates had an abiotic precipitation rate of
34.05 = 6.69 mg d1. Corals on the eAE substrates grew at an average rate of
41.45 + 3.96 mg d-l. After subtracting the average abiotic precipitation rates
of the bare eAE substrates from the eAE corals, the average adjusted eAE
coral growth rate was 7.95 + 3.37 mg d!, and the adjusted average daily
calcification rate was 0.45 = 0.21 mg cm™? d'l. There were no significant
differences between the adjusted eAE coral calcification rate and the inert
control coral calcification rate (p > 0.05; Table S4), indicating all elevated
mass changes on the eAE corals were from abiotic precipitation (Figure 3).
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Further, there were no significant differences in growth rates among genets
or among replicate aquaria (p > 0.05).

Impact of eAE on Pseudodiploria clivosa fragments with different heights

Bulk water carbonate chemistry (Table 1) did not differ significantly
among aquarium replicates or treatments within the P. clivosa experiment.
Across the two experiments, however, there was a significant overall
difference in the carbonate chemistry system (t = 12.365; p < 0.0001; Table
S5). Post-hoc pairwise comparisons revealed that [CO;y] (t = 12.365; p <
0.001) and pCO;, (12.852; p < 0.001) were significantly higher in the A.
cervicornis experiment, while [CO32] (t = 8.772; p < 0.0001) and Qa, (t =
9.093; p < 0.00001) were significantly lower in the A. cervicornis experiment
compared to the P. clivosa experiment (Table 1). Despite these bulk water
differences, all measured carbonate chemistry values fell within normal
ranges for Bear Cut, Miami, Florida, and may reflect seasonal variability in
Biscayne Bay seawater (Enochs et al. 2019).

Short corals grown on the inert acrylic pucks grew at an average rate of
3.11 £ 1.18 mg d-!, corresponding to a daily calcification rate of 0.38 + 0.16
mg cm d! when standardized to each coral’s surface area (Figure 4). Tall
corals grown on the inert acrylic pucks grew at a similar rate, averaging 3.19
+ 1.21 mg d-1, with a corresponding daily calcification rate of 0.40 + 0.15 mg
cm2 d-!. The bare eAE substrates had an abiotic precipitation rate of 24.94 +
3.69 mg dl. Short corals on the eAE substrates grew at an average rate of
29.79 + 1.84 mg d1, and tall corals on the eAE substrates grew at an average
rate of 28.28 + 1.24 mg d-1. After subtracting the abiotic precipitation rates
of the bare eAE substrates from the eAE corals, the adjusted growth rate of
tall eAE corals was 3.34 + 1.24 mg d’l, yielding a daily calcification rate of
0.42 + 0.16 mg cm™? d! (Figure 4). For the short eAE corals, the adjusted
growth rate was 4.85 = 1.84 mg d'1, with a daily calcification rate of 0.60 =+
0.22 mg cm™ d-1.

There were significant effects of substrate type (t(5.0) = 5.020; p <
0.001), coral height (t(42.3) = 4.738; p < 0.00001), and their interaction
(t(42.0) = 3.740; p < 0.0001; Table S6) on the daily calcification rates of the
P. clivosa microfragments (Figure 4). Post-hoc pairwise comparisons
revealed that only the short eAE corals calcified at significantly higher rates
than all other treatment groups. Short eAE corals grew on average faster
than the short corals on inert pucks (£(4.962) = 5.020; p < 0.05), the tall eAE
corals (t(42.272) = 4.737; p < 0.001), and the tall corals on inert pucks
(t(4.962) = 4.558; p < 0.05). This represents a 43% increase in daily
calcification rates among the eAE corals grown within the pH boundary layer.
There were no significant differences in growth rates among genets or among
replicate aquaria (p > 0.05).

Abiotic precipitation rates on eAE bare cathodes did not differ
significantly between the two growth experiments (Table S7), although the
lower precipitation rate observed during the P. clivosa experiment (24.94 +
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3.69 mg d-!) compared to the A. cervicornis experiment (34.05 + 6.69 mg d-
1y likely reflects the additional cathode cleaning introduced in the P. clivosa
experiment (Methods).

Enhanced areal growth rates in the short eAE corals were observed
independently of abiotic mineral precipitation. There were significant effects
of substrate (t(136.4) = 4.500; p < 0.0001), height (t(136.7) = 5.447; p <
0.0001), and their interaction (£(136.4) = 2.976; p < 0.0001) on the planar
tissue growth rates of P. clivosa microfragments (Figure 5; Table S8). Post-
hoc analysis revealed that only the short eAE corals (0.032 = 0.020 cm? day
1) had significantly higher planar tissue growth rates compared to the short
corals on inert pucks (0.021 £+ 0.020 cm? day!), representing a 52% increase
in planar tissue growth rates (t(137) = 4.499, p < 0.0001). In contrast, the
growth rates of tall eAE corals (0.019 = 0.020 cm?2 day!) and tall corals on
inert pucks (0.018 = 0.020 cm? day!) were not significantly different (p >
0.05). Additionally, there were no significant differences in growth rates
among genets or among replicate aquaria (p > 0.05).

At the conclusion of the experiment, there were no significant differences
in measured photochemical efficiency values (Fv/Fm) between the eAE and
inert corals or between the short and tall corals (p > 0.05; Table S9). Further,
all corals survived the 60-day experiment, and there was no observable
change in polyp expansion. There was, however, a significant effect of genet
(ANOVA F(5, 42) = 4.816; p < 0.01; Table S10) on measured Fv/Fm, with
genet 8 (Fv/Fm = 0.523 * 0.0680) being significantly less photochemically
efficient than genets 9 (Fv/Fm = 0.572 = 0.0680; p < 0.05), A (Fv/Fm = 0.588
+ 0.0680; p < 0.001), and B (Fv/Fm = 0.574 £ 0.0680; p < 0.05; Figure S6).

Discussion

Our experiments demonstrated that eAE can significantly increase the
growth of small coral fragments that reside fully within the elevated alkalinity
microenvironment. Short P. c/ivosa microfragments (5 mm height) grown on
eAE substrates exhibited markedly higher calcification and planar tissue
growth rates than identical fragments on inert controls or taller fragments
(15 mm height) grown on eAE substrates. After sixty days, P. clivosa
microfragments grown on eAE substrates showed a roughly 43% higher daily
calcification rate and a 52% greater planar tissue growth rate compared to
conspecifics on inert acrylic pucks (Figure 4; Figure 5). These enhancements
occurred only for the small corals that remained within the microenvironment
of elevated pH immediately above the cathode, consistent with the
microsensor measurements of pH elevated by an average of 0.14 units 5 mm
above the cathode (Table S2). This finding supports prior field-based
observations and provides empirical evidence in favor of the hypothesis
proposed by Hilbertz and Goreau (1996) that eAE creates an enhanced pH
microenvironment capable of increasing coral growth rates.

The growth responses we observed align with prior studies of eAE and
alkalinity addition, while highlighting important differences in growth
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metrics. Sabater and Yap (2002) similarly reported 50% faster skeletal
thickening (girth growth) in Porites cylindrica branches closest to an eAE
cathode, even though vertical extension rates did not increase. Likewise, a
recent study by Samidon et a/. (2022) found 30% greater planar tissue growth
in a branching coral directly attached to an eAE substrate, but no effect on a
massive coral where an epoxy layer separated the coral from the cathode.
These field studies mirror our findings that only coral tissue within the
enhanced pH boundary layer is stimulated to grow faster.

Notably, the growth enhancement we measured is modest compared to
some anecdotal field reports of eAE. For example, Goreau et al (2022)
highlighted case studies that achieved two to ten-fold increases in linear
extension of corals under long-term eAE treatment. It is likely that such
dramatic case studies reflect confounding environmental differences and/or
different growth metrics (e.g., linear extension and calcification). Linear
extension is a plastic trait that can be influenced by factors like water flow
and light while gross calcification rates remain the same (Jokiel 1978; Todd
2008; Kuffner et al. 2017). Moreover, linear extension rates may persist
under shifts in carbonate chemistry even as calcification rates decline,
reflecting a trade-off in which corals maintain extension at the expense of
skeletal density (Fantazzini et al. 2015; Tambutté et al. 2015). This
underscores the limitations of using linear extension alone to assess growth
responses to eAE. In this light, our moderate growth enhancements offer a
more comprehensive assessment of eAE’s capacity to stimulate growth rates
by integrating both calcification and linear extension metrics.

Further, eAE provides modest growth enhancements compared to other
AE methods that have been tested in controlled laboratory settings. For
instance, Langdon et al. (2000) observed threefold to twelvefold increases in
coral calcification rates when Qar was enhanced with calcium or carbonate
ion additions. Similarly, Herfort ef al/ (2008) reported four- to fivefold
increases in calcification and photosynthesis rates by adding bicarbonate
while maintaining pH at 8.2, and Marubini and Thake (1999) found roughly a
doubling of coral growth under elevated DIC concentrations. These studies
confirm corals' high capacity for accelerated calcification under favorable
seawater carbonate chemistries. Our results did not achieve these high
growth enhancements, likely because abiotic mineral precipitation at the
cathodes competes for the electrochemically produced alkalinity, a symptom
of runaway precipitation that ultimately results in less realized AE than is
added to the system (en sensu Moras et al. 2022). Additionally, the lower
growth enhancements observed with eAE may result from its selective
enhancement of At without concurrent enhancements to DIC, whereas many
mineral addition AE methods alter both At and DIC, e.g., CO32 (Figure S7).
Nevertheless, the observed 43% enhancement of calcification rates for short
microfragments in our eAE system is consistent with a thermodynamic
facilitation of calcification.

Chan and Connolly’s (2013) meta-analysis of coral growth experiments
with varying Qa; predicted an approximate 15% change in calcification rates
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per unit change of Qar. Accordingly, the modeled Qa, within the pH boundary
layer, assuming hydroxide ion production following the water reduction
reaction, increased from 3.85 to 4.68 (Figure S7), yielding a predicted
increase in calcification rates of 14%. Our observed enhancement (43%)
exceeding this prediction is anticipated due to the nonlinear effect of Qar on
calcification rates (Anthony et al. 2011). Moreover, Chan and Connolly’s wide
confidence interval (0-31% change in calcification rates per unit of Qar, most
accurate between 2-4) suggests a possible maximum predicted growth
increase of 37%, which more closely aligns with our observed enhancement.
Additionally, using the equation fit by Langdon (2000) to a range of enhanced
carbonate chemistries, our modeled Qa; increase predicts an average
calcification enhancement of 92%, ranging from 75-168%. Taken together,
our calcification enhancements of small microfragments are in line with the
enhanced Qa, facilitation of calcification rates.

In contrast to the short microfragments, taller corals (= 15 mm) in our
study showed no measurable growth benefit from eAE, an outcome that can
be explained by the limited spatial extent of the pH boundary layer. Neither
the tall P. clivosa fragments (15 mm) nor the branching A. cervicornis
nubbins (50 mm) exhibited significant increases in calcification relative to
their controls. In the A. cervicornis experiment, the increased mass gain on
eAE substrates was entirely attributed to abiotic mineral precipitation on the
cathode (Figure 3). Similarly, in the P. clivosa microfragment experiment, the
tall fragments on eAE grew at the same rate as those on inert acrylic pucks
(Figure 4).

Several lines of evidence support boundary-layer limitations as the
explanation for why larger corals did not benefit from eAE. Our
microelectrode measurements demonstrated that the eAE-induced pH
elevation attenuated to bulk values within 15 mm of the cathode under flow
speeds of 1 cm s! (Figure 2), and no changes in bulk carbonate chemistry
were detected during either growth experiment (Table 1). The taller P. clivosa
fragments and the actively calcifying tips of the A. cervicornis extended well
beyond the enhanced microenvironment. Additionally, substantial
cyanoacrylate glue was needed to affix the A. cervicornis branches to the
cathodes, covering basal tissue and further limiting exposure to the elevated
microenvironment. Thus, even the lowest portions of these corals remained
outside of the alkalinity-enhanced layer and did not exhibit enhanced growth,
unlike the basal regions observed in Sabater and Yap (2002), which were
directly attached to the cathodes. Additionally, the limited spatial extent of
eAE presents a temporal limitation, as corals can outgrow the enhanced
microenvironment, explaining the transient benefits observed in the
literature (Sabater and Yap 2004; Huang et al. 2020).

These results corroborate previous findings that enhanced growth rates
are restricted to the basal portions of taller fragments or to fragments
directly attached to cathodes without intervening epoxy layers, which both
place the coral outside of the pH boundary layer (Sabater and Yap 2002;
Samidon et al. 2022). Nevertheless, there are documented cases of larger
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corals experiencing growth benefits from eAE (Damayanti et al. 2011;
Natasasmita et al. 2016). Such discrepancies likely stem from differences in
local environmental conditions, including flow speed, light availability, and
cathode geometry. Our findings highlight water flow significantly governs
eAE efficacy by modulating the thickness of the alkalinity-enhanced
microenvironment. Under static conditions (0 cm s~1), the elevated pH
boundary layer reached approximately 20 mm in thickness but decreased to
15 mm at 1 cm s~! and further to 5 mm at 3 cm s~! (Figure 2). Enhanced
mixing and advective transport from modest water flows rapidly diminish the
microenvironment thickness, consistent with mass transfer theory and
previous studies of benthic boundary layers (Jorgensen and Revsbech 1985;
Shashar et al. 1996). Consequently, stronger flow speeds in field conditions
are likely to decrease the boundary layer thickness, reducing eAE
effectiveness. This aligns with observations by Natasasmita et al. (2016), who
noted growth enhancements in larger fragments (3-5 cm) under relatively
slow currents in their coral nursery.

Cathode geometry further influences boundary layer thickness. Many
successful eAE field implementations use round, cage-like cathode structures
that are likely to retain alkalinity more effectively than the flat-channel plates
used in our experiments (e.qg., Goreau et al. 2004; Damayanti et al. 2011). Our
flow-mediated pH boundary layers above a flat plate are consistent with
recent modeling by Lees et al. (2024), though our measured gradients were
smaller, possibly due to unaccounted abiotic precipitation in their models.
Ultimately, our results reinforce that eAE is spatially limited and most
effective in low-flow environments suitable for smaller-sized corals or plating
morphologies that can remain entirely within the elevated alkalinity
boundary layer. This spatial limitation underscores the practical applicability
of eAE primarily in sheltered, low-flow locations, such as land-based
nurseries or back-reef zones with limited water exchange. Alternatively,
selecting cathode geometries to reduce advective transport and retain
alkalinity or tuning eAE to programmed or naturally occurring reduced water
flow periods, e.g., tide cycles, could increase the feasibility of eAE in a wider
range of environments.

Moreover, electrochemical system design plays a critical role in eAE
performance and ecological stewardship. In addition to flow-mediated
boundary layer thickness, the appropriate placement of the anode is essential
to avoid introducing acidity and chlorine byproducts into the coral’s
environment. The anode produces acids and reactive chlorine species, which
can be harmful to marine organisms (Eisaman et al. 2023). In our system, we
housed the anode within a pump-driven siphon to evacuate acidity and
chlorine gas. All corals survived the 60-day experiments and photochemical
efficiency values were reflective of healthy corals, underscoring the
negligible effects of eAE on coral health when oxidative reactions are isolated
from the system. This is in contrast to some eAE deployments which observed
declining survival rates on eAE structures (Romatzki 2014). Therefore,
similar precautions would be necessary in both land and field applications,
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for example positioning the anode downstream of prevailing currents. At
larger operational scales required for effective coral restoration,
containment, utilization, or treatment of electrochemical byproducts would
be necessary to prevent environmental contamination. This challenge is
already recognized in broader AE research for carbon dioxide removal, where
integrated designs have been proposed to pair AE systems with industrial
processes, capturing byproducts like chlorine and hydrogen gas for
commercial use and energy generation (Eisaman et al. 2023; Taqgieddin et al.
2024).

Further, the current density of the electrochemical system must be
optimized. While higher current densities increase hydroxide ion production
and enhance local alkalinity, they also accelerate abiotic precipitation of
calcium carbonate, magnesium hydroxide (brucite), and anodic byproducts
(Akamine and Kashiki 2002; Carré et al. 2020). The abiotic mineral
precipitation can rapidly sequester the leached alkalinity, a process known
as runaway precipitation whereby excessive alkalinity inputs trigger a
disproportionate amount of mineral formation and lead to a net decrease in
At (Moras et al. 2022). In our system, even at a moderate current density of
1 A m=2, abiotic precipitation exceeded biological calcification rates by
approximately 300% (Figure 4). Managing the trade-off between abiotic
precipitation and biological calcification is critical, especially for small
fragments that must remain in close contact with the cathode. While tipping
points in current density that favor brucite over calcium carbonate
precipitation have been documented (Akamine and Kashiki 2002; Devi et al.
2025), similar investigations are needed to determine optimal current
densities for effective eAE applications. The electrical current densities
investigated in this study fell in line with those reported by other studies (e.q.,
Borell et al. 2010), though some studies employed current densities orders of
magnitude less (e.g., Kihara et al. 2013; Huang et al. 2020). However, many
published studies on eAE do not report the electrical current density used in
their systems, limiting comparability and reproducibility.

Despite its constraints, eAE shows promise as a complementary
technology to existing restoration methods and can enhance coral growth
rates in field and land-based nurseries. Microfragmentation—a technique in
which corals are cut into small fragments to maximize growth efficiency—has
been widely adopted in restoration nurseries due to its ability to accelerate
lateral tissue growth and generate a high number of outplantable units
(Forsman et al. 2015; Page et al. 2018). In our study, microfragments exposed
to eAE exhibited up to 50% greater planar tissue growth than controls,
suggesting that combining eAE with microfragmentation could further
enhance growth rates and skirting morphology, reducing grow-out time in
nurseries and increasing biomass production. Further, microfragments
remain highly susceptible to post-outplant mortality, primarily due to
predation by fish and other grazers (Page et al. 2018; Koval et al. 2020; Rivas
et al. 2021). Their small size disproportionately amplifies the effects of partial
mortality and tissue loss shortly after deployment. By accelerating
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microfragment growth in nurseries, eAE may help microfragments reach
larger, less vulnerable size classes more quickly, potentially improving their
survivorship post-outplant. Additional studies are needed to evaluate whether
growth enhancements observed in controlled settings translate to improved
outcomes in the field.

Moreover, eAE may enhance coral breeding efforts, a multifaceted
endeavor that involves crossing gametes, culturing larvae, and propagating
lab-reared offspring, which themselves can be introduced back into a
selective breeding pipeline (Banaszak et al. 2023). While these efforts yield
thousands of genetically diverse individuals, survivorship remains a major
bottleneck, with fewer than 3% of settled spat typically surviving their first
year (Wilson and Harrison 2005; Vermeij and Sandin 2008). Additionally,
even fast-growing species such as Acropora require at least four years to
reach reproductive maturity (Chamberland et al. 2016), limiting the
scalability of assisted evolution strategies that rely on multi-generational
selection (Van Oppen et al. 2015). By enhancing growth rates during early
life stages, eAE may accelerate the sexual maturation of propagated corals,
enabling shorter breeding cycles and improving throughput in selective
propagation efforts.

In addition to enhancing coral growth, the abiotic precipitation generated
by eAE may serve a structural function by contributing calcium carbonate
material that can stabilize loose reef rubble. The abiotically formed aragonite
produces a carbonate substrate with physical and chemical properties
comparable to natural coral skeletons (Margheritini et al. 2021). This mineral
accretion can act as a binding agent, cementing unconsolidated substrates
into more stable frameworks (Landivar Macias et al. 2024). Such stabilization
is particularly valuable in degraded reef environments where rubble
movement inhibits coral recruitment and survivorship (Ceccarelli et al. 2020).
However, systems intended for rubble stabilization need to be designed
distinctly from those optimized for coral growth, as the target product shifts
from soluble alkalinity delivery to sustained mineral accretion and substrate
binding.

In conclusion, eAE shows clear potential to accelerate the growth of small
corals, particularly microfragments and juvenile corals, making it a valuable
tool for restoration nurseries. Realizing its full potential will require further
research into long-term efficacy, species-specific responses, system design,
practical deployment, and integration with existing technologies. Addressing
these knowledge gaps and engineering hurdles will help refine eAE
implementation within coral propagation pipelines. With continued
development, eAE is poised to become a complementary technique to
enhance coral growth rates and ultimately increase the scale of restoration.

Data Availability
All data and scripts are publicly available on Github (Kiel 2025).
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Figures

5cm

Figure 1. Diagram of the electrochemically induced alkalinity enhancement
(eAE) system. The system includes an (A) evacuation hose and (B) anode
wire integrated into a (C) PVC anode pump, which surrounds a (D) mesh
anode to evacuate oxidizing products. (E) Inert acrylic pucks and (F) steel
cathodes are arranged around the anode and are connected to the
electrochemical system via (G) cathode wires and (H) ring terminals. The
system was tested with (I) five-centimeter Acropora cervicornis fragments,
(J) short, five-millimeter and (K) tall, fifteen-millimeter Pseudodiploria
clivosa microfragments grown on E and F and (L) bare eAE cathodes. The
system was mounted to (M) an acrylic stage to keep cathodes equidistantly
spaced from the anode in a circular pattern. The PVC anode pump and
evacuation hose are shortened for illustrative purposes only (Figure S1).
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on eAE substrates (eAE Coral), abiotic precipitation from bare eAE substrates
(eAE Bare), eAE Corals adjusted for abiotic precipitation by subtracting the
average eAE Bare value from the eAE Coral value (eAE Coral Adjusted), and
corals grown on inert acrylic pucks (Inert).
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Figure 4. P. clivosa (A, C) bulk mass change rates (mg day!) and (B, D)
area-standardized daily calcification rates (mg cm2 day!) for short and tall
microfragments, including corals grown on eAE substrates (eAE Coral),
abiotic precipitation from bare eAE substrates (eAE Bare), eAE Corals
adjusted for abiotic precipitation by subtracting the average eAE Bare value
from the eAE Coral value (eAE Coral Adjusted), and corals grown on inert
acrylic pucks (Inert); * denotes significant differences at p < 0.05.
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Figure 5. P. clivosa planar area growth rates for microfragments on eAE

substrates (circles) and inert acrylic pucks (triangles). The slopes of the lines

indicate the average planar tissue growth rates for the eAE corals (solid) and

for the corals grown on inert acrylic pucks (dotted). Standard errors are only

displayed for lines that have significantly different slopes (p < 0.0001) within

a fragment height class.
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839 Tables

840 Table 1. Carbonate chemistry data measured from the two coral growth experiments, represented as mean
841 + 1SD. pHrt refers to the spectrophotometrically measured pH. T denotes significant differences between
842 experiments atp < le-7.
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Supplementary Materials
Supplementary Methods
PH microprofiling

pH profiles were measured with a microprofiling system equipped with a
pH microelectrode (pH-50, tip diameter 40-60 pm, spatial resolution 75-150
pm, response time <10 s; Unisense) and an external reference electrode
(Radiometer analytical), calibrated daily with NBS buffers. The reference
electrode was positioned orthogonally to a reference line connecting the
cathode and anode to minimize interference from the electrolysis system.
Values of pHnps were converted to pHt using seacarb by first converting to
the seawater-scale (pHnbs2sws) and subsequently to the total scale (pHconv)
using the default arguments. Microelectrodes were connected to a
multimeter (fx-6 UniAmp, Unisense) and continuously recorded at 0.33 Hz
with the Unisense SensorTrace software. The microelectrode tip was initially
positioned in the center of the cathode at the electrode surface with the aid
of a camera connected to a macroscopic lens and moved vertically upward
into the water column with a micromanipulator (MM33-2, Unisense). Based
on the analysis of preliminary profiles, a protocol was defined with 100 pm
steps between 0-500 pm, 250 pm steps between 500-3,000 pm, 500 pm steps
between 3,000-8,000 pm, 1,000 pm steps between 8,000-15,000 pm, and
2,500 pm steps between 15,000-25,000 pm for a total of 37 steps spanning
2.5 cm for each profile. Each step took a total of 45 seconds, with 5 s to move
between steps, 10 s for the sensor measurement to stabilize, and 30 s of
measuring at 0.33 Hz, granting a total profiling time of approximately 30
minutes. Due to the lack of measured pH changes above the inert substrates
during preliminary analysis, a simplified protocol was defined with 250 pm
steps between 0-500 pm, 500 pm steps between 500-5,000 pm, 1,000 pm
steps between 5,000-10,000 pm and 5,000 pm steps between 10,000-25,000
pm. Treatment of the inert and eAE profiles were otherwise identical. The 10
measurements at each step were averaged and taken as the individual step
pH. Profiles were recentered to account for the small variation among
replicate profiles by first converting to H* concentration, using the
conversion [H*] = 10PH, then dividing the concentration at any given step by
the mean of the profile’s bulk seawater [H*], defined by the average of the
final three steps. This non-dimensional [H*] was then multiplied by the mean
of all the profile’s bulk [H*] to convert back to a standardized [H*] and back
to pH units prior to further analysis (Hurd et al. 2011; Schoepf et al. 2018).

Alternative boundary layer height derivations

We analyzed four methods commonly used to determine the boundary
layer height from the pH microprofiles including the intersection of the
profile with 99% of the bulk concentration, intersection of the profile to its
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fitted hyperbolic tangent model, the extraction of the inflection point
denoting the boundary layer height from the fitted hyperbolic tangent model,
and the consecutive percent reductions in the hydrogen ion concentration
(Jorgensen and Revsbech 1985; Nishihara and Ackerman 2007; Hurd et al.
2011). For all profiles, there was an initial rapid decrease in pH followed by
a linear decrease throughout the boundary layer before coalescing to bulk
pH values, approximating a hyperbolic tangent function. To aid in the analysis
and improve the fit of the hyperbolic tangent model, the initial pH values >
8.5 were omitted for all four boundary layer height protocols. The 99%
method and the two hyperbolic tangent methods were in close agreement
with each other and could discern differences across the profiles. The
consecutive percent reduction method, on the other hand, was on average 1
cm less than the other methods and could not differentiate between profiles
illustrated in its near uniform assessment of boundary layer heights (Figure
S2). When the percentage threshold (f), 10%, or consecutive count, n=4, was
altered from the recommendations of Hurd et a/. (2011), the boundary layer
heights increased, but the variance was too high to discern differences
between profiles or could not determine the boundary layer height (Figure
S3). Further, the boundary layer heights from the 99% method and the
hyperbolic tangent data intersection method were limited to the discrete
sampling locations of the microsensor protocol. As such, the values locked in
on discrete integer heights and had artificially low variances (Figure S2).
Consequently, the fitted hyperbolic tangent model’s boundary layer height
was used for all analysis in the manuscript.

Supplementary Figures
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oxidative reactions at the anode, highlighting the influence of
electrochemical processes on the seawater carbonate system in a closed

system.
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Figure S7. Carbonate chemistry property-property plot depicting the
enhancement of the bulk water (triangle) to microenvironment carbonate
chemistries (circles) with the electrochemical water reduction reaction (OH-
) and direct carbonate ion addition (CO32"). Modeled water reduction reaction
increased aragonite saturation states (Qar) from its initial value of 3.85 to
4.68, concomitant with a pHt enhancement from 8.02 to 8.16. This contrasts
with direct CO3%" addition, which would yield an Qa, of 4.99 with the same
pHt of 8.16. Contour lines depict pHrt isopleths; parenthetically defined
contour lines depict Qa, within the dashed isopleth surrounding a pHt 0f 8.16
+ 0.02. Arrows indicate the ionic additions required to raise the
microenvironment pHt with the respective ion.
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1263 Table S1. ANOVA model outputs for the effect of electrical current density
1264 (J) on carbonate chemistry parameters; degrees of freedom (df), sum of
1265 squares (SS), mean square (MS)

Fixed

Term Effoct df SS MS F p-value
TA ] 2 37763 18881 51.9  1.63e4
DIC ] 2 485.0 242.52  3.136  0.117
pCcO2 | ] 2 1417859 708929  16.61 3.58¢-3
coz J 2 1.069e-09 5'314079' 17.17  3.29¢-3
gcos | J 2 2.553e-09 1'207966' 14.16  5.34e-3
] _ 5.2996- 5.286-
co3 2 1.06e-08 o 169.2 o8

1266 Table S2 Average pHrt at heights (mm) above the cathode as a function of
1267 flow speed (cm s'1) and current density (A m2) data, see vertical dashed lines
1268 in Figure 2.

Flow Curre Heig
nt
speed densit ht pH SD N
(cm s (mm T
o YE
m-)
8.21 0.00
0 1 5 3 3 3
8.05 0.00
0 1 15 5 1 3
8.06 0.00
1 0.5 5 1 6 3
8.02 0.00
1 0.5 15 0 1 3
8.16 0.02
1 1 5 0 5 6
8.02 0.00
1 1 15 5 5 6
8.18 0.01
1 3 5 = 3 3
8.04 0.00
1 3 15 0 1 3
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8.03 0.01
3 1 5 5 3 3
8.02 0.00
3 1 15 0 0 3
1269 Table S3. ANOVA model outputs for the effect of flow speed (v) and electrical
1270 current density (J) on pH boundary layer heights; degrees of freedom (df),
1271  sum of squares (SS), mean square (MS)
Fixed
Term Effoct df SS MS F p-value
BO_,ZJ;Z?Y J 2 180143675 90071838 145.6 8.23e-6
DPH-Omm J 2 0.16982 0.08491 59.99 1.08e-4
DpPH-5mm ] 2 0.25858 0.012929 50.76 1.74e-4
DPH-15mm J 2 7.02e-04 3.51e-04 139.2 9.38e-6
BOJZ’;g?W \% 2 360885100 180442550 100.5 2.44e-5
PH-Omm v 2 0.0000816 0.0000408 0.091 0.915
DPH-5mm v 2 0.05338 0.026688 100.9 2.41e-5
PH-15mm \% 2 0.0019677  0.0009838 358.3 5.72e-7
1272 Table S4. Linear mixed effects model output for the effect of eAE and inert
1273 substrates on the calcification rates of A. cervicornis; standard error (se),
1274 degrees of freedom (df).
Fixed Estimate
Effect df se t-value  p-value
substrate | -0.05197 59.76384 0.039 -1.348 0.183
1275 Table S5. Generalized linear mixed-effects model output for the effect of
1276 growth experiments on the carbonate chemistry system; standard error (se),
1277 degrees of freedom (df).
. estim t-
Fixed Effect ate se e p-value
experiment gy B pay SRR
7 5 35
0.01 185.3 0.00E+
co3 2.882 6 11 00
0.01 3294 0.00E+
DiC 5.125 6 78 00
0.01 321.8 O0.00E+
HCO3 5.006 6 30 00
0.01 i 0.00E+
Omega -1.242 6 79(.)86 00
0.01 233.6 0.00E+
pCcoz2 3.634 6 62 00
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salinity 1.006 O.é)l 64467 0.0000E+
spectrophotometric pH | -0.451 0 g 1 29.00 5 1455
6
TA 5260 O.é)l 3%83.2 0.0000E+
Temperature 0.799 O.é) 15 1(')40 O-OOOOE"‘
experiment:CO3 0362 002 1494 1.69E-
experiment:DIC 0.205 0'22 8.459 Z'Z%E'
experiment:HCO3 0186 %)% 7662 F
experiment:Omega 0.368 0'22 1 5:'31 7 5-2 3E
experiment:pCO2 0.008 %)% 0345 700
experiment:salinity | 0.185 )% 7.652  19°F
experiment:spectrophotom 0.02 3.10E-
etric pH 0.223 “,~ 9.216 20
experiment:TA 0.227 0'22 9.362 7'3%E'
experiment:Temperature | 0.207 0'22 8.538 1 ?{;E

1278 Table S6. Linear mixed effects model output for the effect of eAE and inert
1279 substrates, fragment height, and their interaction on the calcification rates
1280 of P. clivosa; standard error (se), degrees of freedom (df).

Fixed Effect Estim se dr & p-
ate value value
Substrate | -0.223 9:0¢ 435 54, 4.lde
4 2 0 -3
. 0.03 422 04.7 2.45e
Height -0.181 3 99 38 5
Substrate:He 0.201 0.05 419 3.74 5.52e
ight : 4 87 0 -4

1281 Table S7. Linear mixed effects model output for the effect of experiment on
1282 the abiotic mineral precipitation bulk mass change rates; standard error (se),
1283 degrees of freedom (df).

Fixed Estim t- D-
effect ‘ ate 5€ ar value value
experim | g o1 5.03 10.7 163 0132
ent 7 91 o
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1285
1286
1287

1288
1289

1290
1291
1292
1293

1294

Table S8. Linear mixed-effects model output for the effect of substrate,
height, and their interaction on planar areas. Fixed effects each interact with
time to calculate planar tissue growth rates (cm= day!); standard error (se),

degrees of freedom (df).

Fixed Effect Estimate  se df t-value p-value
Days 0.032 0.002 136.8 19.020 <2e-16
Days:substrate -0.011 0.002 136.4 -4.500 1.44e-05
Days:height -0.013 0.002 136.7 -5.447 2.31e-07

Days:substrate:height| 0.010 0.003 136.4

2.976 0.00346

Table S9. Linear mixed-effects model output for the effect of substrate and

height on photochemical efficiency values (Fv/Fm).

Fixed Effect Estimate SE df T value Pvalue
substrate -0.018 2.20e-2 2.46 -0.827 0.481
height 0.000 1.0e-2 37.0 0.070 0.945
substrate:height -0.009 1.35e-2 37.0 -0.634 0.530

Table S10. ANOVA model outputs for the effect of genet on photochemical
efficiency values (Fv/Fm); degrees of freedom (df), sum of squares (SS), mean

square (MS)

Fixed
Term Effect df SS MS F p-value
Fv/Fm | genet 5 2.10e-2 4.20e-3 4.82 1.44e-3
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